Eva Zupan (Avtor), Miran Saje (Avtor)

Povzetek

Abstract The integration of the rotation from a given angular velocity is often required in practice. The present paper explores how the choice of the parametrization of rotation, when employed in conjuction with different numerical time-integration schemes, effects the accuracy and the computational efficiency. Three rotation parametrizations – the rotational vector, the Argyris tangential vector and the rotational quaternion – are combined with three different numerical time-integration schemes, including classical explicit Runge–Kutta method and the novel midpoint rule proposed here. The key result of the study is the assessment of the integration errors of various parametrization–integration method combinations. In order to assess the errors, we choose a time-dependent function corresponding to a rotational vector, and derive the related exact time-dependent angular velocity. This is then employed in the numerical solution as the data. The resulting numerically integrated approximate rotations are compared with the analytical solution. A novel global solution error norm for discrete solutions given by a set of values at chosen time-points is employed. Several characteristic angular velocity functions, resulting in small, finite and fast oscillating rotations are studied.

Ključne besede

rotacije;kotna hitrost;integracije po času;kvaternioni;metoda Runge-Kutta;metoda midpoint;rotation;angular velocity;time integrations;quaternions;Runge-Kutta method;midpoint rule;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FGG - Fakulteta za gradbeništvo in geodezijo
Založnik: Elsevier
UDK: 624.07
COBISS: 5478497 Povezava se bo odprla v novem oknu
ISSN: 0965-9978
Št. ogledov: 3305
Št. prenosov: 1102
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarne ključne besede: rotacije;kotna hitrost;integracije po času;kvaternioni;metoda Runge-Kutta;metoda midpoint;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 723-733
Letnik: ǂLetn. ǂ42
Zvezek: ǂšt. ǂ9
Čas izdaje: sept. 2011
DOI: 10.1016/j.advengsoft.2011.05.010
ID: 8312577