Povzetek

This paper studies the efficiency of a recently defined population-based direct global optimization method called Differential Evolution with self-adaptive control parameters. The original version uses fixed population size but a method for gradually reducing population size is proposed in this paper. It improves the efficiency and robustness of the algorithm and can be applied to any variant of a Differential Evolution algorithm. The proposed modification is tested on commonly used benchmark problems for unconstrained optimization and compared with other optimization methods such as Evolutionary Algorithms and Evolution Strategies.

Ključne besede

diferencialna evolucija;evolucijski algoritmi;optimizacijske metode;umetna inteligenca;differential evolution;control parameter;fitness function;global function optimization;self-adaptation;population size;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
UDK: 004.8
COBISS: 11642646 Povezava se bo odprla v novem oknu
ISSN: 0924-669X
Št. ogledov: 1656
Št. prenosov: 113
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarne ključne besede: diferencialna evolucija;evolucijski algoritmi;optimizacijske metode;umetna inteligenca;
URN: URN:SI:UM:
Strani: str. 228-247
Letnik: ǂVol. ǂ29
Zvezek: ǂno. ǂ3
Čas izdaje: Dec. 2008
DOI: 10.1007/s10489-007-0091-x
ID: 8718584