Iztok Banič (Avtor), Matevž Črepnjak (Avtor), Matej Merhar (Avtor), Uroš Milutinović (Avtor)

Povzetek

In [I.Banič, M. Črepnjak, M. Merhar, U. Milutinović, Limits of inverse limits, Topology Appl. 157 (2010) 439-450] the authors proved that if a sequence of graphs of surjective upper semi-continuous set-valued functions ▫$f_n: X \rightarrow 2^X$▫ converges to the graph of a continuous single-valued function ▫$f: X \rightarrow X$▫, then the sequence of corresponding inverse limits obtained from ▫$f_n$▫ converges to the inverse limit obtained from ▫$f$▫. In this paper a more general result is presented in which surjectivity of ▫$f_n$▫ is not required. Also, the result is generalized to the case of inverse sequences with non-constant sequences of bonding maps. Finally, these new theorems are applied to inverse limits with tent maps. Among other applications it is shown that the inverse limits appearing in the Ingram conjecture (with a point added) form an arc.

Ključne besede

matematika;topologija;kontinuumi;limite;inverzne limite;navzgor polzvezne večlične funkcije;poti;loki;mathematics;topology;continua;limits;inverse limits;upper semi-continuous set-valued functions;paths;arcs;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
UDK: 515.126
COBISS: 18474504 Povezava se bo odprla v novem oknu
ISSN: 0166-8641
Št. ogledov: 1715
Št. prenosov: 97
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: matematika;topologija;kontinuumi;limite;inverzne limite;navzgor polzvezne večlične funkcije;poti;loki;
URN: URN:SI:UM:
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1099-1112
Letnik: ǂVol. ǂ158
Zvezek: ǂiss. ǂ9
Čas izdaje: 2011
ID: 8723776
Priporočena dela:
, ni podatka o podnaslovu
, ni podatka o podnaslovu
, ni podatka o podnaslovu
, ni podatka o podnaslovu