magistrsko delo
Andrej Čopar (Avtor), Tomaž Curk (Mentor)

Povzetek

Interakcije med proteini in RNA imajo ključno vlogo pri velikem številu celičnih procesov. Eksperimentalna analiza 3D struktur molekul je počasna in zahtevna, zato obstaja velika potreba po računskih metodah, ki uspešno napovedujejo mesta ter strukturo molekul v interakciji. V magistrskem delu smo definirali vrsto značilk, ki opisujejo lokalne lastnosti interakcij protein-RNA, na podlagi podatkov o 3D strukturah molekul protein-RNA. Razvili smo metodo, ki združuje strojno učenje in optimizacijski postopek za napovedovanje mesta interakcij med proteinom in RNA. Napovedi strojnega učenja se uporabijo za določanje začetnega stanja optimizacije. Optimizacijski postopek nato uporabi ocenjevalne funkcije osnovane na porazdelitvi 3D strukturnih značilk in tako predlaga najverjetnejšo pozicijo molekule RNA. Predlagani napovedni model dosega natančnost, ki je primerljiva z uspešnostjo najboljših obstoječih metod.

Ključne besede

bioinformatika;interakcije protein-RNA;strukturna analiza;napovedni model;kombinatorična optimizacija;umestitev molekul;računalništvo;računalništvo in informatika;magisteriji;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [A. Čopar]
UDK: 004.85:575.112(043.2)
COBISS: 1536019139 Povezava se bo odprla v novem oknu
Št. ogledov: 1121
Št. prenosov: 252
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Modeling 3D structures of protein-RNA interactions
Sekundarni povzetek: Protein-RNA interactions have an essential role in many cellular processes. Experimental analysis of 3D molecular structure is slow and difficult process. Consequently, computational methods, which successfully predict interaction sites and molecular conformations are needed. In this thesis we have defined a number of attributes to describe local properties of protein-RNA interactions using data on 3D structure of protein-RNA molecules. We have implemented a method that uses machine learning and optimization algorithm for prediction of protein-RNA interaction sites. Machine learning predictions are used to generate initial positions for optimization. Optimization algorithm uses scoring functions based on the distribution of 3D structural attributes to identify most likely positions of the RNA molecule interacting with a given protein. The accuracy of the proposed prediction model is comparable to results obtained with best existing methods.
Sekundarne ključne besede: bioinformatics;protein-RNA interactions;structural analysis;prediction model;combinatorial optimization;molecular docking;computer science;computer and information science;master's degree;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 1000471
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 83 str.
ID: 8739327