doktorska disertacija
Povzetek
Reševanje problemov je kot ključna spretnost človeka, poleg aritmetike, merjenja in algebre, zajeta v standardih osnovnošolske matematike (NCTM, 2000; Jordan in Levine, 2009; Evropska komisija, 2012; Geary, 2012) in potrebna kot nujna spretnost za uspešnost na področju naravoslovja, tehnologije, inženirstva in matematike (STEM) (National Mathematics Advisory Panel, 2008). Ker je reševanje človekovih problemov vezano na realno življenje, so aritmetični besedni problemi (v nadaljevanju ABP) pomembna vrsta matematičnih nalog v šoli, ki povezujejo matematična znanja z realnimi življenjskimi situacijami. Pri reševanju ABP mora učenec razumeti jezikovne in numerične informacije v nalogi ter jih prevesti v ustrezno mentalno reprezentacijo, oblikovati načrt reševanja in izpeljati ustrezne računske postopke. Rezultati tujih in domačih raziskav (Geary, 1993; Montague, 1997; Jitendra in Hoff, 1999; Fuchs in Fuchs, 2007; Kavkler idr., 2011) kažejo, da imajo učenci težave pri reševanju ABP. Empirične raziskave številnih avtorjev (Montague in Applegate, 1993; Bryant, Bryant in Hammill, 2000; Verschaffel, Greer in De Corte, 2000) navajajo številne primanjkljaje na področju aritmetike, jezika, delovnega spomina in pozornosti, ki jih imajo učenci z učnimi težavami pri matematiki na področju reševanja ABP ter pri nudenju pomoči poudarjajo pomen kognitivnih, metakognitivnih, motivacijskih in čustvenih dejavnikov.
Osrednji cilj raziskave je bil ugotoviti latentne značilnosti učencev z učnimi težavami pri matematiki in učencev brez učnih težav pri reševanju ABP. V vzorec je bilo vključeno 140 učencev petih razredov iz osrednjeslovenske in gorenjske regije, 70 učencev z učnimi težavami pri matematiki ter 70 učencev brez učnih težav pri matematiki. V raziskavi so bili uporabljeni različni merski instrumenti, s katerimi smo ugotavljali računske, zaznavno-motorične, verbalne in neverbalne intelektualne sposobnosti ter izvršilne funkcije. Uporabljena sta bila tudi vprašalnika za učitelje in za učence, s katerimi smo zbrali podatke o učiteljevi oceni učenčevega branja, računanja in strategij reševanja ABP ter podatke o načinu reševanja ABP, ki so jih podali učenci. Podatki so bili kvalitativno in kvantitativno obdelani v skladu z namenom raziskave in raziskovalnimi hipotezami. Za vse vključene spremenljivke je bila narejena deskriptivna statistika, nadalje pa so bili podatki obdelani z naslednjimi statističnimi metodami: t-test za neodvisne vzorce, koeficient korelacije, hi-kvadrat, analiza variance, diskriminantna analiza, faktorska analiza.
Rezultati so pokazali, da se skupini statistično pomembno razlikujeta po vseh manifestnih spremenljivkah uporabljenih merskih instrumentov. Ugotovljene so bile tudi razlike v latentni strukturi. Tako latentno strukturo učnih težav pri matematiki na področju reševanja ABP sestavlja osem faktorjev, med katerimi so pomembni avtomatizacija aritmetičnih dejstev in postopkov, delovno pomnjenje – izvršilne funkcije in hitrost dekodiranja. Latentno strukturo učencev brez učnih težav pa sestavlja devet faktorjev, med katerimi so najpomembnejši presoja zmožnosti reševanja ABP, avtomatizacija veščin branja in računanja ter verbalno razumevanje. Vsebinske povezave pa lahko ugotavljamo s tremi skupnimi faktorji, ki so avtomatizacija veščin branja in računanja, jezikovne zmožnosti ter presoja zmožnosti reševanja ABP. Iz faktorske strukture učnih težav pri matematiki na področju reševanja ABP ugotovimo, da je pri reševanju ABP ključnega pomena faktor avtomatizacije aritmetičnih dejstev in postopkov z deležem variance 20,94 %. Iz rezultatov analize variance ter rezultatov diskriminantne analize je razvidno, da se skupini učencev statistično pomembno razlikujeta po rezultatih uporabljenih testov, preizkusov in vprašalnikov. Učinkovito identifikacijo in diagnostično oceno učencev z učnimi težavami pri matematiki na področju reševanja ABP omogočajo Vprašalnik za učitelje (informacije o aritmetičnih znanjih in strategijah reševanja ABP), Preizkus ABP, Desetminutni preizkus za ugotavljanje avtomatizacije aritmetičnih dejstev in postopkov, Vprašalnik o načinu reševanja ABP za učence in Test motenosti v branju in pisanju. Izbrane kognitivne sposobnosti, ki se statistično pomembno povezujejo z reševanjem ABP pri učencih z učnimi težavami pri matematiki, so avtomatizacija osnovnih aritmetičnih dejstev ter jezikovne sposobnosti, medtem ko se pri učencih brez učnih težav z reševanjem ABP statistično pomembno povezujejo hitrost dekodiranja, jezikovne sposobnosti, neverbalno rezoniranje, selektivna pozornost in zmožnost inhibicije nepomembnih dražljajev.
Ugotovili smo, da se skupini učencev ne razlikujeta v osnovnih štirih korakih reševanja ABP (preberem, podčrtam ključne informacije, izračunam, zapišem odgovor), statistično pomembno pa se razlikujeta v drugih korakih reševanja. Tako si učenci z učnimi težavami pri matematiki ABP preberejo le enkrat, slabše razumejo ABP po prvem branju, si ne parafrazirajo in grafično ne ponazorijo ABP, redkeje preverjajo potek reševanja ABP, si pri reševanju pomagajo s prsti, so manj motivirani za reševanje ABP, se jim zdi reševanje ABP težko in niso prepričani, da bodo ABP zmožni rešiti. Nasprotno pa učenci brez učnih težav pri matematiki ABP večkrat preberejo nalogo in vključujejo več metakognitivnih procesov in strategij, ker nadzorujejo potek reševanja in na koncu tudi pregledajo celoten potek reševanja. V skladu z ugotovitvami lahko zaključimo, da imajo učenci z učnimi težavami pri matematiki na področju reševanja ABP v primerjavi z učenci, ki so uspešni, tako kognitivne kot metakognitivne primanjkljaje, ki terjajo razlike v poučevanju reševanja ABP. Ti učenci potrebujejo celostno obravnavo, ki vključuje direktno in usmerjeno poučevanje reševanja ABP ter treninge avtomatizacije dejstev, jezikovnega razumevanja in vizualne reprezentacije. Raziskava ima pomembnee implikacije za poučevanje ABP, obravnavo učencev, ki imajo težave pri reševanju ABP, ter nadaljnje raziskovanje.
Ključne besede
učenci;osnovne šole;inkluzija;pismenost;kognitivni procesi;metakognicija;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2015 |
Tipologija: |
2.08 - Doktorska disertacija |
Organizacija: |
UL PEF - Pedagoška fakulteta |
Založnik: |
[M. Kalan] |
UDK: |
37.091.3:51(043.3) |
COBISS: |
10550857
|
Št. ogledov: |
1530 |
Št. prenosov: |
241 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Strategies of solving arithmetic word problems in students with learning difficulties in mathematics |
Sekundarni povzetek: |
Problem solving as an important skill is, beside arithmetic, measure and algebra, included in standards of school mathematics (National Council of Teachers of Mathematics) (NCTM, 2000) and needed as a necessary skill for successfulness in science, technology, engineering and mathematics (STEM) (National Mathematics Advisory Panel, 2008). Since solving of human problems is connected to the real life, the arithmetic word problems (in short AWP) are an important kind of mathematics tasks in school and connect mathematics knowledge with real-life situations. When solving AWP a student needs to understand the language and numeric information in the problem in order to translate them into an adequate mental representation, create a solution plan and execute suitable procedural calculations. Foreign and domestic results (Geary, 1993; Montague, 1997; Jitendra and Hoff, 1999; Fuchs and Fuchs, 2007; Kavkler et al., 2011) indicate that students often experience difficulties with AWP solving. Empirical researches of numerous authors (Montague and Applegate, 1993; Bryant, Bryant and Hammill, 2000; Verschaffel, Greer and De Corte, 2000) mention numerous deficits in students with mathematics difficulties in (fields of) arithmetic, language, working memory and attention when solving AWP. Improvements in solving AWP have been emphasized with respect to cognitive, metacognitive, motivation and emotional aspects.
The central aim of the research was to investigate latent characteristics of students with mathematical difficulties and students without mathematical difficulties in solving AWP. The sample included 140 students from the fifth grade from Upper Carniola and Ljubljana, 70 students with mathematical difficulties and 70 students without them. In the research heterogeneous measurement instruments were used to investigate calculating, perceptio-motor, linguistic and nonverbal intellectual skills and executive function. Two questionnaires for teachers and students were used to gather information about the teacher's estimation of the students’ reading, calculating and strategies in solving AWP and information about the student's strategies of solving AWP reported by students. Qualitative and quantitative processing of gathered data was carried out in accordance with the purpose of research and hypothesis. For all included variables a descriptive analysis was made, all remainder statistical data was handled with the following statistical methods: t-test for independent samples, correlation coefficient, chi-square, analysis of variance, principal factor analysis and discriminative analysis.
The results showed significant differences among two groups of students in all included manifest variables of used measuring instruments. There were also differences in the latent structure of factors. So the latent structure of math difficulties consists of eight factors, among them three are very important: automatization of arithmetic facts and algorithmic calculation, working memory – executive functions and decoding speed. The latent structure of students without math difficulties consists of nine factors, among them three play an important role: judgment of capability of solving AWP, automatization of reading and calculation and verbal understanding. There are three common factors, i. e. automatization of reading and calculation, linguistic skills and judgment of capability of solving AWP. Upon the factor's structure of math difficulties in solving AWP it can be established that the factor of automatization of arithmetic facts with part of variance of 20,94 % is of essential importance. The analysis of variance and discriminant analysis showed that the groups of students are statistically different based on the results of the used instrument. The students with math difficulties are identified with the questionnaire for teachers (information about arithmetic knowledge and strategies for solving AWP), Test of AWP, 10-minute test for assessment of automatization of arithmetic facts and calculation, The questionnaire of solving AWP for students and Test of difficulties in writing and reading. Cognitive skills, such as the automatization of basic arithmetic facts and linguistic skills, are statistically significantly connected with solving AWP by students with math difficulties. In addition, among cognitive skills, the decoding speed, linguistic skills, nonverbal reasoning, selective attention and the ability to inhibit irrelevant information, are statistically significantly connected with solving AWP by students without math difficulties.
It was established that there was no difference among the groups in basic four steps in solving AWP (read the problem, underline the key words, calculate, write down the answer), but there is a statistically significant difference between groups in other steps in solving AWP. In short, students with math difficulties read the word problem just once, understand it less clearly after just one reading, do not paraphrase and do not use visual representation, rarely verify the accuracy of their solution, use fingers, are less motivated to solve the AWP, they find it difficult and they are not confident that they will be able to solve the AWP. On the other hand, students without math difficulties read the word problem many times and use more metacognitive processes and strategies because they control the whole process of solving. In accordance with the findings, we can conclude that students with math difficulties in comparison to students without math difficulties generally have the cognitive and metacognitive deficits that suggest a different approach and instructions. It is necessary to develop a treatment with direct and explicit instructions for solving AWP and training with the focus on automatization of basic arithmetic facts, language understanding and visual representation. Finally, the research has important implications for teaching AWP, treating students with math difficulties and further research. |
Sekundarne ključne besede: |
Matematika;Disertacije;Učne težave; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Doktorska disertacija |
Komentar na gradivo: |
Univ. v Ljubljani, Pedagoška fak. |
Strani: |
XI, 243 str. |
ID: |
8758259 |