ǂan ǂaddendum
Povzetek
A finite group ▫$R$▫ is a DCI-group if, whenever ▫$S$▫ and ▫$T$▫ are subsets of ▫$R$▫ with the Cayley digraphs ▫${\mathrm {Cay}}(R, S)$▫ and▫ ${\mathrm{Cay}}(R, T)$▫ isomorphic, there exists an automorphism ▫$\varphi$▫ of ▫$R$▫ with ▫$S^\varphi = T$▫. The classification of DCI-groups is an open problem in the theory of Cayley digraphs and is closely related to the isomorphism problem for digraphs. This paper is a contribution toward this classification, as we show that every dihedral group of order ▫$6p$▫, with ▫$p\geq 5$▫ prime, is a DCI-group. This corrects and completes the proof of C. H. Li et al. [J. Algebr. Comb. 26, No. 2, 161--181 (2007), Theorem 1.1] as observed by the reviewer (Conder in Mathematical Reviews MR2335710).
Ključne besede
Cayley graph;isomorphism problem;CI-group;dihedral group;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2015 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UP - Univerza na Primorskem |
UDK: |
519.17:412.54 |
COBISS: |
1538038980
|
ISSN: |
0925-9899 |
Št. ogledov: |
2448 |
Št. prenosov: |
64 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Neznan jezik |
Vrsta dela (COBISS): |
Delo ni kategorizirano |
Strani: |
str. 959-969 |
Letnik: |
ǂVol. ǂ42 |
Zvezek: |
ǂiss. ǂ4 |
Čas izdaje: |
Dec. 2015 |
DOI: |
10.1007/s10801-015-0612-3 |
ID: |
9159931 |