ǂan ǂaddendum
Edward Dobson (Avtor), Joy Morris (Avtor), Pablo Spiga (Avtor)

Povzetek

A finite group ▫$R$▫ is a DCI-group if, whenever ▫$S$▫ and ▫$T$▫ are subsets of ▫$R$▫ with the Cayley digraphs ▫${\mathrm {Cay}}(R, S)$▫ and▫ ${\mathrm{Cay}}(R, T)$▫ isomorphic, there exists an automorphism ▫$\varphi$▫ of ▫$R$▫ with ▫$S^\varphi = T$▫. The classification of DCI-groups is an open problem in the theory of Cayley digraphs and is closely related to the isomorphism problem for digraphs. This paper is a contribution toward this classification, as we show that every dihedral group of order ▫$6p$▫, with ▫$p\geq 5$▫ prime, is a DCI-group. This corrects and completes the proof of C. H. Li et al. [J. Algebr. Comb. 26, No. 2, 161--181 (2007), Theorem 1.1] as observed by the reviewer (Conder in Mathematical Reviews MR2335710).

Ključne besede

Cayley graph;isomorphism problem;CI-group;dihedral group;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UP - Univerza na Primorskem
UDK: 519.17:412.54
COBISS: 1538038980 Povezava se bo odprla v novem oknu
ISSN: 0925-9899
Št. ogledov: 2448
Št. prenosov: 64
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Neznan jezik
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 959-969
Letnik: ǂVol. ǂ42
Zvezek: ǂiss. ǂ4
Čas izdaje: Dec. 2015
DOI: 10.1007/s10801-015-0612-3
ID: 9159931