Povzetek

As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph ▫$G$▫ is called elementary if ▫$G$▫ is connected and every edge belongs to a 1-factor of ▫$G$▫. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face ▫$f$▫ of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection of ▫$f$▫ and the outer cycle of ▫$G$▫ results in an elementary graph. We characterize the reducible faces of a plane elementary bipartite graph. This result generalizes the characterization of reducible faces of an elementary benzenoid graph.

Ključne besede

matematika;teorija grafov;elementarni dvodelni graf;reducibilno lice;benzenoidni graf;mathematics;graph theory;plane elementary bipartite graph;reducible face;benzenoid graph;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
UDK: 519.17
COBISS: 19104264 Povezava se bo odprla v novem oknu
ISSN: 1234-3099
Št. ogledov: 677
Št. prenosov: 329
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: matematika;teorija grafov;elementarni dvodelni graf;reducibilno lice;benzenoidni graf;
URN: URN:SI:UM:
Vrsta dela (COBISS): Znanstveno delo
Strani: str. 289-297
Letnik: ǂVol. ǂ32
Zvezek: ǂno. ǂ2
Čas izdaje: 2012
DOI: 10.7151/dmgt.1607
ID: 9595929