Iskalni niz:
išči po
išči po
išči po
išči po
Vrsta gradiva:
Jezik:
Št. zadetkov: 3
Izvirni znanstveni članek
Oznake: medicinska fizika;medicinsko slikanje;tumorji;globoko učenje;medical physics;medical imaging;tumors;deep learning;
Objective. Deep learning models that aid in medical image assessment tasks must be both accurate and reliable to be deployed within clinical settings. While deep learning models have been shown to be highly accurate across a variety of tasks, measures that indicate the reliability of these models ar ...
Leto: 2024 Vir: Fakulteta za matematiko in fiziko (UL FMF)
Izvirni znanstveni članek
Oznake: rak dojke;tveganja;globoko ležeči tumorji;mamografija;breast cancer risk;deep learning;mammography;
Objective. When it comes to the implementation of deep-learning based breast cancer risk (BCR) prediction models in clinical settings, it is important to be aware that these models could be sensitive to various factors, especially those arising from the acquisition process. In this work, we investig ...
Leto: 2025 Vir: Fakulteta za matematiko in fiziko (UL FMF)
Izvirni znanstveni članek
Oznake: dejavniki tveganja;rak dojke;kalibracija;mamografija;breast cancer risk;calibration;mammography;
State-of-the-art Breast Cancer Risk (BCR) prediction models have been originally trained on mammograms with pectoral muscle (PM) included. This study investigated whether excluding PM during training/fine-tuning improves the model's BCR discrimination performance, calibration, and robustness.&xD;&xD ...
Leto: 2025 Vir: Fakulteta za matematiko in fiziko (UL FMF)
Št. zadetkov: 3
Ključne besede:
Leto izdaje:
Avtorji:
Repozitorij:
Tipologija:
Jezik: