Iskalni niz:
išči po
išči po
išči po
išči po
Vrsta gradiva:
Jezik:
Št. zadetkov: 2
Izvirni znanstveni članek
Oznake: medicinska fizika;medicinsko slikanje;tumorji;globoko učenje;medical physics;medical imaging;tumors;deep learning;
Objective. Deep learning models are increasingly being implemented for automated medical image analysis to inform patient care. Most models, however, lack uncertainty information, without which the reliability of model outputs cannot be ensured. Several uncertainty quantification (UQ) methods exist ...
Leto: 2025 Vir: Fakulteta za matematiko in fiziko (UL FMF)
Izvirni znanstveni članek
Oznake: medicinska fizika;medicinsko slikanje;tumorji;globoko učenje;medical physics;medical imaging;tumors;deep learning;
Objective. Deep learning models that aid in medical image assessment tasks must be both accurate and reliable to be deployed within clinical settings. While deep learning models have been shown to be highly accurate across a variety of tasks, measures that indicate the reliability of these models ar ...
Leto: 2024 Vir: Fakulteta za matematiko in fiziko (UL FMF)
Št. zadetkov: 2
Ključne besede:
Leto izdaje:
Avtorji:
Repozitorij:
Tipologija:
Jezik: