Maja Fošner (Author), Joso Vukman (Author)

Abstract

We prove the following result: Let ▫$R$▫ be a prime ring and let ▫$T : R \to R$▫ be an additive mapping satisfying the relation ▫$nT(x^n) = T(x)x^{n-1} + xT(x)x^{n-2} + ... + x^{n-1}T(x)$▫ for all ▫$x \in R$▫ where ▫$n > 1$▫ is some fixed integer. If ▫$char(R) = 0$▫ or ▫$n \le char(R) \ne 2$▫, then ▫$T$▫ is of the form ▫$T(x) = \lambda x$▫ for all ▫$x \in R$▫ and some fixed element ▫$\lambda \in C$▫ where ▫$C$▫ is the extended centroid of ▫$R$▫.

Keywords

matematika;algebra;prakolobar;polprakolobar;funkcijska identiteta;dvostranski centralizator;mathematics;prime ring;semiprime ring;functional identity;two-sided centralizer;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 512.552
COBISS: 15196505 Link will open in a new window
ISSN: 0362-1588
Views: 745
Downloads: 64
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
Secondary keywords: matematika;algebra;prakolobar;polprakolobar;funkcijska identiteta;dvostranski centralizator;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 353-361
Volume: ǂVol. ǂ35
Issue: ǂno. ǂ2
Chronology: 2009
ID: 1030536