delo diplomskega seminarja
Abstract
V svoji diplomski nalogi sem se ukvarjal z mehaniko tekočin. V prvem delu sem svojo analizo omejil na idealne tekočine, fluide, katerih tokovnice lahko ponazorimo z dvodimenzionalnimi vektorskimi polji brez izvorov in vrtincev. Dokazal sem, da lahko le-te povežemo s teorijo holomorfnih funkcij, ter nato s pomočjo Riemannovega upodobitvenega izreka tokove okoli zapletenih objektov reduciramo na nekatere elementarne primere. V zadnjem delu naloge sem nato dodatno predstavil tudi Blasiousov izrek in nekaj primerov ne-idealnih tokov, ki pa generirajo vzgon.
Keywords
matematika;holomorfizem;biholomorfizem;meromorfizem;harmonične funkcije;konformne preslikave;idealni tok tekočin;kompleksni potencial;tokovnice;ekvipotenciali;Joukowskijeva preslikava;Riemannov upodobitveni izrek;Blasiusov izrek;
Data
Language: |
Slovenian |
Year of publishing: |
2018 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[Ž. Šifrer] |
UDC: |
517.5 |
COBISS: |
18440025
|
Views: |
692 |
Downloads: |
232 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Conformal mappings and fluid flows |
Secondary abstract: |
In my thesis I dealt with fluid mechanics. In first part of my analysis I focused on ideal fluids. These are fluids, whose streamlines can be represented with twodimenzional vector fields without sources and vortices. I proved that such vector fields can be connected to theory of holomorphic functions. Using Riemann mapping theorem, flows around complicated objects can be reduced to elementary examples. In last part I also additionally presented Blasius theorem and some non-ideal flow examples, which do produce lift. |
Secondary keywords: |
mathematics;holomophism;biholomorphism;meromorphism;harmonic functions;conformal maps;ideal fluid flow;complex potential;streamlines;equipotentials;Joukowsky map;Riemann mapping theorem;Blasius theorem; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Pages: |
25 str. |
ID: |
10960824 |