delo diplomskega seminarja
Abstract
V diplomskem delu bomo obravnavali diskretno interpretacijo Riemannovega upodobitvenega izreka oziroma alternativni postopek iskanja biholomorfizma med poljubno, pravo, enostavno povezano podmnožico kompleksne ravnine in enotskim diskom. Ta bo temeljil na dejstvu, da konformna preslikava na infinitezimalni ravni krožnice preslika v krožnice. Natančneje, predstavili bomo metodo polnjenja s krožnicami in z njeno pomočjo definirali zaporedje diskretnih preslikav, ki jih bomo zvezno razširili na triangulacijo obeh območij. Izkazalo se bo, da v limiti dobimo biholomorfno preslikavo iz Riemannovega upodobitvenega izreka.
Keywords
matematika;konformne preslikave;kvazikonformne preslikave;polnjenje s krožnicami;
Data
Language: |
Slovenian |
Year of publishing: |
2018 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[A. Kišek] |
UDC: |
517.5 |
COBISS: |
18455641
|
Views: |
709 |
Downloads: |
228 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
The Discrete Interpretation of The Riemann Mapping Theorem |
Secondary abstract: |
In this thesis we will observe the Riemann mapping theorem in an alternative way through the theory of discrete analytic functions. The fact that conformal mapping sends infinitesimal circles to circles will be used to construct biholomorphism between non-empty simply connected open subset of the complex plane and the open unit disk. We will describe a method called circle packing, which will help us to define a sequence of discrete mappings which can be continuously extended to a triangulation of both domains. Finally, we will prove that this sequence converges to a conformal mapping, which conicides with the one from the Riemann mapping theorem. |
Secondary keywords: |
mathematics;conformal mappings;quasiconformal mappings;circle packing; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Pages: |
27 str. |
ID: |
10961995 |