diplomsko delo
Jan Popič (Author), Borko Bošković (Mentor), Janez Brest (Co-mentor)

Abstract

V zaključnem delu smo zasnovali računalniški program AlphaLady, ki se je sposoben naučiti igranja igre dama brez vnosa človeškega znanja. Za dosego tega smo uporabili vzpodbujevalno učenje, drevesno preiskovanje Monte Carlo in globoke konvolucijske mreže za ocenitev posameznih stanj v igri. Predstavili smo programe Alpha Go, AlphaGo Zero in AlphaZero, na podlagi katerih je zasnovan naš program. Opisali smo uporabljeno ogrodje in teoretično ozadje uporabljenih pristopov. Uspelo nam je naučiti 9 različic programa, pri čemer je vsaka naslednja različica enakovredna ali boljša kot prejšnja.

Keywords

umetna inteligenca;globoko učenje;konvolucijska nevronska mreža;drevesno preiskovanje Monte Carlo;vzpodbujevalno učenje;igra dama;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: [J. Popič]
UDC: 004.8(043.2)
COBISS: 22848534 Link will open in a new window
Views: 907
Downloads: 205
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Deep Learning and the game of Checkers
Secondary abstract: In the thesis, we designed a computer program AlphaLady, which is capable of learning to play the game of checkers without human knowledge. To achieve this we have used reinforcement learning, Monte Carlo tree search and deep convolutional neural network for evaluating board positions. Our program is based on the introduced programs Alpha Go, AlphaGo Zero and AlphaZero. We described a framework that was used for implementation and theoretical background of used approaches. We managed to train 9 versions of our program, with each successive version being equal or better than the previous one.
Secondary keywords: artificial intelligence;deep learning;convolutional neural network;Monte Carlo tree search;reinforcement learning;checkers;
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Pages: XVII, 50 str.
ID: 11205917
Recommended works:
, diplomsko delo
, pristop samo-igranja za učenje igranja pretepaške igre z globokim spodbujevalnim učenjem
, no subtitle data available