delo diplomskega seminarja
Abstract
Hinčinova neenakost spada med klasične neenakosti. Čeprav velja za verjetnostno neenakost, se pogosto uporablja tudi v analizi. V diplomskem delu ob dokazu neenakosti predstavimo nekatere lastnosti Schwartzovega prostora in Fourierovih transformacij, s katerimi v zaključku dokažemo Littlewood-Paleyev izrek, ki velja za enega temelnjih izrekov v harmonični analizi.
Keywords
matematika;Hinčinova neenakost;Fourierova transformacija;Schwartzov prostor;Littlewood-Paleyev izrek;
Data
Language: |
Slovenian |
Year of publishing: |
2019 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[M. Brešar] |
UDC: |
517 |
COBISS: |
18710617
|
Views: |
1183 |
Downloads: |
180 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Khintchine's inequality |
Secondary abstract: |
Khintchine inequality is one of the classical inequalities. Even though it is considered a probabilistic inequality, we find most of its applications in analysis. In this diploma thesis, along with the proof of the inequality we present some properties of Schwartz spaces and the Fourier transform, that we use to prove the Littlewood-Paley theorem, which is one of fundamental theorems of harmonic analysis. |
Secondary keywords: |
mathematics;Khintchine inequality;Fourier transform;Schwartz space;Littlewood- Paley theorem; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Pages: |
30 str. |
ID: |
11211155 |