delo diplomskega seminarja
Miha Brešar (Author), Oliver Dragičević (Mentor)

Abstract

Hinčinova neenakost spada med klasične neenakosti. Čeprav velja za verjetnostno neenakost, se pogosto uporablja tudi v analizi. V diplomskem delu ob dokazu neenakosti predstavimo nekatere lastnosti Schwartzovega prostora in Fourierovih transformacij, s katerimi v zaključku dokažemo Littlewood-Paleyev izrek, ki velja za enega temelnjih izrekov v harmonični analizi.

Keywords

matematika;Hinčinova neenakost;Fourierova transformacija;Schwartzov prostor;Littlewood-Paleyev izrek;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [M. Brešar]
UDC: 517
COBISS: 18710617 Link will open in a new window
Views: 1183
Downloads: 180
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Khintchine's inequality
Secondary abstract: Khintchine inequality is one of the classical inequalities. Even though it is considered a probabilistic inequality, we find most of its applications in analysis. In this diploma thesis, along with the proof of the inequality we present some properties of Schwartz spaces and the Fourier transform, that we use to prove the Littlewood-Paley theorem, which is one of fundamental theorems of harmonic analysis.
Secondary keywords: mathematics;Khintchine inequality;Fourier transform;Schwartz space;Littlewood- Paley theorem;
Type (COBISS): Final seminar paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Pages: 30 str.
ID: 11211155
Recommended works:
, delo diplomskega seminarja
, delo diplomskega seminarja
, delo diplomskega seminarja
, delo diplomskega seminarja