delo diplomskega seminarja
Jan Genc (Avtor), Miran Černe (Mentor)

Povzetek

S pomočjo funkcije sinc Zapišemo znani Dirichletov integral. Vpeljemo normo na $L^1$ prostorih, dokažemo izrek o monotoni konvergenci, Fatoujevo lemo, Lebesgueov izrek o dominirani konvergenci in nazadnje da so funkcije $C(\mathbb{R}) \cap L^1(\mathbb{R})$ v prostoru $L^1(\mathbb{R})$ goste. Dokažemo Riemann-Lebesgueovo lemo in inverzno formulo. Vpeljemo konvolucijo in dokažemo, da je asociativna in komutativna ter s pomočjo konvolucije in Fourierove transformacije izpeljemo formulo za izračun integrala z mejama $-\infty$ in $\infty$ produkta končnega števila funkcij. Izračunamo Fourierovo transformiranko funkcije sinc in s pomočjo tega izračunamo vrednosti določenih Borweinovih integralov, za druge pa poiščemo zgornjo mejo. Nato izračunamo vrednost prvega Borweinovega integrala, ki ga s prejšnjimi metodami nismo mogli. Nazadnje s pomočjo Lebesgueovega izreka o dominirani konvergenci preučimo še obnašanje vrednosti drugih.

Ključne besede

Borweinovi integrali;Fourierova transformacija;konvolucija;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [J. Genc]
UDK: 517
COBISS: 208480515 Povezava se bo odprla v novem oknu
Št. ogledov: 37
Št. prenosov: 17
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Borwein integrals
Sekundarni povzetek: Using sinc function we write the well-known Dirichlet's integral. We define the norm on $L^1$ spaces and prove the monotone convergence theorem, Fatou's lemma, Lebesgue's dominated convergence theorem and that functions $C(\mathbb{R}) \cap L^1(\mathbb{R})$ form a dense subspace of $L^1(\mathbb{R})$. We prove Riemann-Lebesgue's lemma and Fourier inversion theorem. We define convolution and prove that it is associative and commutative and using convolution and Fourier transform we derive the formula of an integral with borders $-\infty$ and $\infty$ of a product of a finite amount of functions. We calculate the Fourier transform of the function sinc and using that we calculate the values of some of the Borwein integrals and find an upper bound for others. We then calculate the value of the Borwein integral that we couldn't calculate before with the previous methods. Using the Lebesgue's dominated convergence theorem we study the behaviour of the rest of the values of Borwein integrals.
Sekundarne ključne besede: Borwein integrals;Fourier transform;convolution;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 30 str.
ID: 25105157
Priporočena dela:
, delo diplomskega seminarja
, delo diplomskega seminarja
, delo diplomskega seminarja
, delo diplomskega seminarja