Abstract
In this paper, we consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity ▫$$\begin{cases} \varepsilon^{2s}M([u]^2_{s, A_{\varepsilon}})(-\Delta)^s_{A_\varepsilon} u + V(x)u = |u|^{{2^\ast_s}-2}u + h(x, |u|^2)u, \quad x \in \mathbb{R}^N ,\\ u(x) \to 0, \quad \text{as} \; |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_{A_\varepsilon}$▫ is source is the fractional magnetic operator with ▫$0 < s < 1$▫, ▫$2^\ast_s = 2N/(N - 2s)$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+$▫ is a continuous nondecreasing function, ▫$V \colon \mathbb{R}^N \to \mathbb{R}^+_0$▫ and ▫$A \colon \mathbb{R}^N \to \mathbb{R}^N$▫ are the electric and magnetic potentials, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that ▫$\varepsilon < \mathcal{E}$▫; and (ii) for any ▫$m^\ast \in \mathbb{N}$▫, has ▫$m^\ast$▫ pairs of solutions if ▫$\varepsilon < \mathcal{E}_{m^\ast}$▫, where ▫$\mathcal{E}$▫ and $▫\mathcal{E}_{m^\ast}$▫ are sufficiently small positive numbers. Moreover, these solutions ▫$u_\varepsilon \to 0$▫ as ▫$\varepsilon \to 0$▫.
Keywords
fractional Schrödinger-Kirchhoff equation;fractional magnetic operator;critical nonlinearity;variational methods;
Data
Language: |
English |
Year of publishing: |
2018 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.956 |
COBISS: |
18207577
|
ISSN: |
0898-1221 |
Views: |
515 |
Downloads: |
386 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Type (COBISS): |
Article |
Pages: |
str. 1778-1794 |
Volume: |
ǂVol. ǂ75 |
Issue: |
ǂiss. ǂ1 |
Chronology: |
March 2018 |
DOI: |
10.1016/j.camwa.2017.11.033 |
ID: |
11215354 |