Sihua Liang (Author), Dušan Repovš (Author), Binlin Zhang (Author)

Abstract

In this paper, we consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity ▫$$\begin{cases} \varepsilon^{2s}M([u]^2_{s, A_{\varepsilon}})(-\Delta)^s_{A_\varepsilon} u + V(x)u = |u|^{{2^\ast_s}-2}u + h(x, |u|^2)u, \quad x \in \mathbb{R}^N ,\\ u(x) \to 0, \quad \text{as} \; |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_{A_\varepsilon}$▫ is source is the fractional magnetic operator with ▫$0 < s < 1$▫, ▫$2^\ast_s = 2N/(N - 2s)$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+$▫ is a continuous nondecreasing function, ▫$V \colon \mathbb{R}^N \to \mathbb{R}^+_0$▫ and ▫$A \colon \mathbb{R}^N \to \mathbb{R}^N$▫ are the electric and magnetic potentials, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that ▫$\varepsilon < \mathcal{E}$▫; and (ii) for any ▫$m^\ast \in \mathbb{N}$▫, has ▫$m^\ast$▫ pairs of solutions if ▫$\varepsilon < \mathcal{E}_{m^\ast}$▫, where ▫$\mathcal{E}$▫ and $▫\mathcal{E}_{m^\ast}$▫ are sufficiently small positive numbers. Moreover, these solutions ▫$u_\varepsilon \to 0$▫ as ▫$\varepsilon \to 0$▫.

Keywords

fractional Schrödinger-Kirchhoff equation;fractional magnetic operator;critical nonlinearity;variational methods;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956
COBISS: 18207577 Link will open in a new window
ISSN: 0898-1221
Views: 515
Downloads: 386
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 1778-1794
Volume: ǂVol. ǂ75
Issue: ǂiss. ǂ1
Chronology: March 2018
DOI: 10.1016/j.camwa.2017.11.033
ID: 11215354