Abstract

We consider parametric equations driven by the sum of a ▫$p$▫-Laplacian and a Laplace operator (the so-called ▫$(p, 2)$▫-equations). We study the existence and multiplicity of solutions when the parameter ▫$\lambda > 0$▫ is near the principal eigenvalue ▫$\hat{\lambda}_1(p) > 0$▫ of ▫$(-\Delta_p,W^{1-p}_0(\Omega))$▫. We prove multiplicity results with precise sign information when the near resonance occurs from above and from below of ▫$\hat{\lambda}_1(p) > 0$▫.

Keywords

near resonance;local minimizer;critical group;constant sign and nodal solutions;nonlinear maximum principle;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956.2
COBISS: 17592153 Link will open in a new window
ISSN: 0095-4616
Views: 436
Downloads: 322
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 193-228
Volume: ǂVol. ǂ75
Issue: ǂiss. ǂ2
Chronology: Apr. 2017
DOI: 10.1007/s00245-016-9330-z
ID: 11221108