Abstract
Obravnavamo naslednji nelinearni problem Kirchhoffovega tipa ▫$$\begin{cases} - \Big (a+b \int_{\mathbb{R}^3} |\nabla u|^2 \Big) \Delta u + V(x)u = f(u), & \text{in} \quad\mathbb{R}^3 \; , \\ u \in H^1 (\mathbb{R}^3) \; , \end{cases}$$▫ kjer sta ▫$a,b > 0$▫ konstanti, nelinearni člen ▫$f$▫ je superlinearen v neskončnosti, s subkritično rastjo, ▫$V$▫ pa je zvezna in vsiljena funkcija. V primeru, ko je ▫$f$▫ liha funkcija za ▫$u$▫, dobimo z uporabo kombinacije invariantnih množic in mini-maks metode Ljusternik-Schnirelmanovega tipa neskončno mnogo rešitev s spremenljivim predznakom za ta problem. Kolikor je nam znano, je bilo doslej najdenih le malo eksistenčnih rezultatov za ta problem. Velja omeniti, da nelinearni člen ni nujno 4-superlinearen v neskončnosti, konkretno vključuje nelinearnost potenčnega tipa ▫$|u|^{p-2}u$▫ za ▫$p$▫ iz intervala ▫$(2,4]$▫.
Keywords
neskončno rešitev s spremenljivim predznakom;problemi Kirchhoffovega tipa;invariantne množice;pojemajoč tok;infinitely many sign-changing solutions;Kirchhoff type problems;invariant sets;descending flow;
Data
Language: |
English |
Year of publishing: |
2019 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FS - Faculty of Mechanical Engineering |
UDC: |
517.956 |
COBISS: |
18506585
|
ISSN: |
0362-546X |
Views: |
400 |
Downloads: |
240 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Neskončno mnogo rešitev s spremenljivim predznakom za probleme Kirchhoffovega tipa v R[sup]3 |
Secondary abstract: |
In this paper, we consider the following nonlinear Kirchhoff type problem: ▫$$\begin{cases} - \Big (a+b \int_{\mathbb{R}^3} |\nabla u|^2 \Big) \Delta u + V(x)u = f(u), & \text{in} \quad \mathbb{R}^3 \; , \\ u \in H^1 (\mathbb{R}^3) \; , \end{cases}$$▫ where ▫$a,b > 0$▫ are constants, the nonlinearity ▫$f$▫ is superlinear at infinity with subcritical growth and ▫$V$▫ is continuous and coercive. For the case when ▫$f$▫ is odd in ▫$u$▫ we obtain infinitely many sign-changing solutions for the above problem by using a combination of invariant sets method and the Ljusternik-Schnirelman type minimax method. To the best of our knowledge, there are only few existence results for this problem. It is worth mentioning that the nonlinear term may not be 4-superlinear at infinity, in particular, it includes the power-type nonlinearity ▫$|u|^{p-2}u$▫ with ▫$p \in (2, 4]$▫. |
Secondary keywords: |
neskončno rešitev s spremenljivim predznakom;problemi Kirchhoffovega tipa;invariantne množice;pojemajoč tok; |
Type (COBISS): |
Article |
Pages: |
str. 33-54 |
Issue: |
ǂVol. ǂ186 |
Chronology: |
Sep. 2019 |
DOI: |
10.1016/j.na.2018.10.007 |
ID: |
11633686 |