Language: | English |
---|---|
Year of publishing: | 2019 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UL FMF - Faculty of Mathematics and Physics |
UDC: | 517.982.22:515.122 |
COBISS: | 18551897 |
ISSN: | 1385-1292 |
Views: | 441 |
Downloads: | 240 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | Topološki vidiki urejenosti v C(X) |
Secondary abstract: | In this paper we consider the relationship between order and topology in the vector lattice ▫$C(X)$▫ of all continuous functions on a Hausdorff space ▫$X$▫. We prove that the restriction of ▫$f\in C(X)$▫ to a closed set ▫$A$▫ in the case when ▫$X\in T_{3 \frac 12}$▫ induces an order continuous operator iff ▫$A= \overline{\mathrm{Int\,}A}.$▫ This result enables us to easily characterize bands and projection bands in ▫$C_0(X)$▫, ▫$C_b(X)$▫ and ▫$C(X)$▫. Our results serve us to provide a positive answer to the question on lifting un-convergence from closed ideals of ▫$C_0(X)$▫ and ▫$C_b(X)$▫. |
Secondary keywords: | vektorske mreže;zvezne funkcije;separacijski aksiomi;pasovi in projekcijski pasovi;urejenostna zveznost;un-konvergenca; |
Pages: | str. 617-635 |
Volume: | ǂVol. ǂ23 |
Issue: | ǂiss. ǂ3 |
Chronology: | July 2019 |
DOI: | 10.1007/s11117-018-0628-8 |
ID: | 11807749 |