Abstract

Background: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.

Keywords

antibiotics;biofilm inhibition;multiple antibiotics;pathogenic bacteria;resistance mechanism;virulence factors;

Data

Language: English
Year of publishing:
Typology: 1.02 - Review Article
Organization: UNG - University of Nova Gorica
UDC: 60
COBISS: 47100163 Link will open in a new window
ISSN: 1389-2010
Views: 1747
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: str. 270-286
Volume: ǂVol. ǂ21
Issue: ǂno. ǂ4
Chronology: 2020
DOI: 10.2174/1389201020666191112155905
ID: 12384984