magistrsko delo
Abstract
V magistrskem delu smo raziskali področje samodejnega strojnega učenja in natančneje metodo za samodejno strojno učenje, imenovano NiaAML. Osredotočili smo se predvsem na iskanje klasifikacijskih cevovodov s pomočjo stohastičnih populacijskih algoritmov po vzorih iz narave. S pomočjo programskega jezika Python in knjižnic, ki jih ponuja, smo razvili istoimensko ogrodje za samodejno strojno učenje NiaAML, namenjeno iskanju in optimizaciji klasifikacijskih cevovodov. V ogrodju smo metodo NiaAML poskusili še izboljšati, nato pa smo primerjali rezultate med originalno in spremenjeno metodo NiaAML.
Keywords
algoritmi po vzorih iz narave;klasifikacijski cevovodi;samodejno strojno učenje;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2021 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[L. Pečnik] |
UDC: |
004.85.021(043.2) |
COBISS: |
54864387
|
Views: |
547 |
Downloads: |
117 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Automated Machine Learning Framework NiaAML |
Secondary abstract: |
In this thesis, we researched the field of automatic machine learning and, more precisely, the method for automatic machine learning called NiaAML. We focused mainly on searching for classification pipelines using stochastic population-based nature-inspired algorithms. With the help of the Python programming language and the libraries it offers, we have also developed a framework of the same name for finding and optimizing classification pipelines. We tried to further improve the NiaAML method in the framework, and then compared the results between the original and the modified NiaAML method. |
Secondary keywords: |
automated machine learning;classification pipelines;nature-inspired algorithms; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Pages: |
XIII, 62 f. |
ID: |
12437394 |