magistrsko delo
Luka Pečnik (Avtor), Iztok Fister (Mentor), Iztok Fister (Komentor)

Povzetek

V magistrskem delu smo raziskali področje samodejnega strojnega učenja in natančneje metodo za samodejno strojno učenje, imenovano NiaAML. Osredotočili smo se predvsem na iskanje klasifikacijskih cevovodov s pomočjo stohastičnih populacijskih algoritmov po vzorih iz narave. S pomočjo programskega jezika Python in knjižnic, ki jih ponuja, smo razvili istoimensko ogrodje za samodejno strojno učenje NiaAML, namenjeno iskanju in optimizaciji klasifikacijskih cevovodov. V ogrodju smo metodo NiaAML poskusili še izboljšati, nato pa smo primerjali rezultate med originalno in spremenjeno metodo NiaAML.

Ključne besede

algoritmi po vzorih iz narave;klasifikacijski cevovodi;samodejno strojno učenje;magistrske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Založnik: [L. Pečnik]
UDK: 004.85.021(043.2)
COBISS: 54864387 Povezava se bo odprla v novem oknu
Št. ogledov: 547
Št. prenosov: 117
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Automated Machine Learning Framework NiaAML
Sekundarni povzetek: In this thesis, we researched the field of automatic machine learning and, more precisely, the method for automatic machine learning called NiaAML. We focused mainly on searching for classification pipelines using stochastic population-based nature-inspired algorithms. With the help of the Python programming language and the libraries it offers, we have also developed a framework of the same name for finding and optimizing classification pipelines. We tried to further improve the NiaAML method in the framework, and then compared the results between the original and the modified NiaAML method.
Sekundarne ključne besede: automated machine learning;classification pipelines;nature-inspired algorithms;
Vrsta dela (COBISS): Magistrsko delo/naloga
Komentar na gradivo: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Strani: XIII, 62 f.
ID: 12437394