Language: | English |
---|---|
Year of publishing: | 2006 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UP - University of Primorska |
UDC: | 511.643 |
COBISS: | 13949273 |
ISSN: | 0024-3795 |
Views: | 3198 |
Downloads: | 89 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | Aditivni ohranjevalci rang-permutabilnosti |
Secondary abstract: | Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions. |
Secondary keywords: | matematika;linearna algebra;matrična algebra;aditivni ohranjevalci;rang;permutacija; |
Type (COBISS): | Not categorized |
Pages: | str. 607-616 |
Volume: | ǂVol. ǂ414 |
Issue: | ǂiss. ǂ2-3 |
Chronology: | 2006 |
ID: | 1472649 |