Simon Špacapan (Author)

Abstract

A family of ▫$n$▫-dimensional Lee spheres ▫$\mathcal{L}$▫ is a tiling of ▫${\mathbb{R}}^n$▫ if ▫$\cup\mathcal{L} = {\mathbb{R}}^n$▫ and for every ▫$L_u, L_v \in \mathcal{L}$▫, the intersection ▫$L_u \cap \L_v$▫ is contained in the boundary of ▫$L_u$▫. If neighboring Lee spheres meet along entire ▫$(n-1)$▫-dimensional faces, then ▫$\mathcal{L}$▫ is called a face-to-face tiling. We prove nonexistence of a face-to-face tiling of ▫${\mathbb{R}}^4$▫, with Lee spheres of different radii.

Keywords

delitev;Leejeva metrika;popolne kode;tiling;Lee metric;perfect codes;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 514.174
COBISS: 14128985 Link will open in a new window
ISSN: 0195-6698
Views: 658
Downloads: 72
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
Secondary title: Neobstoj regularne štiridimenzionalne delitve v Leejevi metriki
Secondary keywords: delitev;Leejeva metrika;popolne kode;
Type (COBISS): Not categorized
Pages: str. 127-133
Volume: ǂVol. ǂ28
Issue: ǂno. ǂ1
Chronology: 2007
ID: 1472869
Recommended works:
, magistrsko delo
, zaključna naloga