Bojan Kuzma (Author)

Abstract

Pokažemo, da je linearna surjekcija ▫$\Phi : \mathcal{A} \to \mathcal{B}$▫, ki ohranja neobrnljivost med dvema polenostavnima, unitalnima, Banachovima algebrama (nad obsegom kompleksnih števil) avtomatično injektivna.

Keywords

matematika;funkcionalna analiza;linearni ohranjevalec;neobrnljiv element;polenostavna Banachova algebra;podstavek;mathematics;functional analysis;linear preserver;noninvertible element;semisimple Banach algebra;socle;

Data

Language: English
Year of publishing:
Typology: 1.03 - Short Scientific Article
Organization: UP - University of Primorska
UDC: 517.982.2
COBISS: 14132825 Link will open in a new window
ISSN: 0011-4642
Views: 2938
Downloads: 126
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Ohranjevalci neobrnljivosti na Banachovih algebrah
Secondary abstract: It is proved that a linear surjection ▫$\Phi: \mathcal{A} \to \mathcal{B}$▫, which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.
Secondary keywords: matematika;funkcionalna analiza;linearni ohranjevalec;neobrnljiv element;polenostavna Banachova algebra;podstavek;
Type (COBISS): Not categorized
Pages: str. 919-921
Volume: ǂVol. ǂ56
Issue: ǂno. ǂ3
Chronology: 2006
ID: 1472873