Language: | English |
---|---|
Year of publishing: | 2007 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UM FNM - Faculty of Natural Sciences and Mathematics |
UDC: | 519.17 |
COBISS: | 14418009 |
ISSN: | 0166-218X |
Views: | 809 |
Downloads: | 90 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Unknown |
---|---|
Secondary title: | O pakirnem kromatičnem številu kartezičnih produktov, šestkotniške mreže in drevesa |
Secondary abstract: | The packing chromatic number ▫$\chi_\rho(G)$▫ of a graph ▫$G$▫ is the smallest integer ▫$k$▫ such that the vertex set of ▫$G$▫ can be partitioned into packings with pairwise different widths. Several lower and upper bounds are obtained for the packing chromatic number of Cartesian products of graphs. It is proved that the packing chromatic number of the infinite hexagonal lattice lies between 6 and 8. Optimal lower and upper bounds are proved for subdivision graphs. Trees are also considered and monotone colorings are introduced. |
Secondary keywords: | matematika;teorija grafov;pakirno kromatično število;kartezični produkt grafov;šestkotniška mreža;subdividiran graf;drevo;računska zahtevnost; |
URN: | URN:SI:UM: |
Type (COBISS): | Not categorized |
Pages: | str. 2003-2311 |
Volume: | ǂVol. ǂ155 |
Issue: | ǂiss. ǂ17 |
Chronology: | 2007 |
ID: | 1473191 |