Language: | English |
---|---|
Year of publishing: | 2013 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UP - University of Primorska |
UDC: | 512.552 |
COBISS: | 16195673 |
ISSN: | 1386-923X |
Views: | 3544 |
Downloads: | 83 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | Jordanska [tau]-odvajanja na lokalno matričnih kolobarjih |
Secondary abstract: | Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫. |
Secondary keywords: | matematika;algebra;antiavtomorfizem;lokalno matrični kolobar;prakolobar;jordanski homomorfizem;jordansko ▫$\tau$▫-odvajanje;Banachov prostor; |
Type (COBISS): | Not categorized |
Pages: | str. 755-763 |
Volume: | ǂVol. ǂ16 |
Issue: | ǂiss. ǂ3 |
Chronology: | 2013 |
ID: | 1476336 |