Maja Fošner (Author), Joso Vukman (Author)

Abstract

The purpose of this paper is to prove the following result. Let ▫$m$▫ and ▫$n$▫ be positive integers, and let ▫$R$▫ be a prime ring with char▫$(R)=0$▫ or ▫$m+n+1 \le char(R)$▫. Let ▫$T \colon R \to R$▫ be an additive mapping satisfying the relation ▫$T(x^{m+n+1}) = {x^m}T(x)x^n$▫ for all ▫$x \in R$▫. In this case ▫$T$▫ is a two-sided centralizer.

Keywords

matematika;algebra;prakolobar;funkcijska identiteta;dvostranski centralizator;mathematics;prime ring;functional identity;two-sided centralizer;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 512.552.3
COBISS: 18547208 Link will open in a new window
ISSN: 0035-7596
Views: 313
Downloads: 25
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Enačba v zvezi z dvostranskimi centralizatorji v prakolobarjih
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 765-776
Volume: Vol. 41
Issue: no. 3
Chronology: 2011
DOI: 10.1216/RMJ-2011-41-3-765
ID: 1477040
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available