Jiabin Zuo (Author), Debajyoti Choudhuri (Author), Dušan Repovš (Author)

Abstract

We establish a continuous embedding ▫$W^{s(\cdot),2}(\Omega) \hookrightarrow L^{\alpha (\cdot)}(\Omega)$▫, where the variable exponent ▫$\alpha(x)$▫ can be close to the critical exponent ▫$2_s^\ast = \frac{2N}{N-2\bar{s}(x)}$▫, with ▫$\bar{s}(x) = s(x,x)$▫ for all ▫$x \in \bar{\Omega}$▫. Subsequently, this continuous embedding is used to prove the multiplicity of solutions for critical nonlocal degenerate Kirchhoff problems with a variable singular exponent. Moreover, we also obtain the uniform ▫$L^\infty$▫-estimate of these infinite solutions by a bootstrap argument.

Keywords

fractional Laplacian of variable-order;continuous embedding;genus;symmetric mountain pass theorem;variable singular exponent;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956
COBISS: 106082051 Link will open in a new window
ISSN: 0022-247X
Views: 118
Downloads: 67
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: art. 126264 (18 str.)
Volume: ǂVol. ǂ514
Issue: ǂiss.ǂ1
Chronology: Oct. 2022
DOI: 10.1016/j.jmaa.2022.126264
ID: 15209470