Abstract

V članku uvedemo in raziskujemo nov pojem fleksibilnosti za domene v evklidskih prostorih glede na minimalne ploskve. Domena ▫$\Omega$▫ v ▫$\mathbb{R}^n$▫ se imenuje fleksibilna, če lahko vsako konformno minimalno imerzijo neke Rungejeve domene ▫$U$▫ v odprti Riemannovi ploskvi ▫$M$▫ aproksimiramo enakomerno na kompaktih v ▫$U$▫ s konformnimi minimalnimi imerzijami ▫$M \to \Omega$▫. Skupaj s pojmom hiperboličnosti za minimalne ploskve, obravnavanim v nedavnih delih avtorjev, je dihotomija med fleksibilnostjo in rigidnostjo s tem razširjena iz kompleksne analize v teorijo minimalnih ploskev.

Keywords

minimalna ploskev;fleksibilna domena;hiperbolična domena;Oka mnogoterost;minimal surface;flexible domain;hyperbolic domain;Oka manifold;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.55:514.7
COBISS: 120880899 Link will open in a new window
ISSN: 0022-247X
Views: 235
Downloads: 55
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Fleksibilne domene za minimalne ploskve v evklidskih prostorih
Secondary abstract: In this paper we introduce and investigate a new notion of flexibility for domains in Euclidean spaces ▫$\mathbb{R}^n$▫ for ▫$n\ge 3$▫ in terms of minimal surfaces which they contain. A domain ▫$\Omega$▫ in ▫$\mathbb{R}^n$▫ is said to be flexible if every conformal minimal immersion ▫$U \to \Omega$▫ from a Runge domain ▫$U$▫ in an open conformal surface ▫$M$▫ can be approximated uniformly on compacts, with interpolation on any given finite set, by conformal minimal immersion ▫$M \to \Omega$▫. Together with hyperbolicity phenomena considered in recent works, this extends the dichotomy between flexibility and rigidity from complex analysis to minimal surface theory.
Secondary keywords: minimalna ploskev;fleksibilna domena;hiperbolična domena;Okova mnogoterost;
Type (COBISS): Article
Pages: art. 126653 (15 str.)
Volume: ǂVol. ǂ517
Issue: ǂiss. ǂ2
Chronology: Jan. 2023
DOI: 10.1016/j.jmaa.2022.126653
ID: 16439149
Recommended works:
, delo diplomskega seminarja
, magistrsko delo
, delo diplomskega seminarja
, magistrsko delo