Abstract
Wide-bandgap gallium oxide (Ga2O3) is one of the most promising semiconductor materials for solar-blind (200 nm–280 nm) photodetection. In its amorphous form, a-Ga2O3 maintains its intrinsic optoelectronic properties while can be prepared at a low growth temperature, thus is compatible with Si integrated circuits (ICs) technology. Herein, the a-Ga2O3 film is directly deposited on pre-fabricated Au interdigital electrodes by plasma enhanced atomic layer deposition (PE-ALD) at a growth temperature of 250 °C. The stoichiometric a-Ga2O3 thin film with a low defect density is achieved owing to the mild PE-ALD condition. As a result, the fabricated Au/a-Ga2O3/Au photodetector shows a fast time response, high responsivity, and excellent wavelength selectivity for solar-blind photodetection. Furthermore, an ultra-thin MgO layer is deposited by PE-ALD to passivate the Au/a-Ga2O3/Au interface, resulting in the responsivity of 788 A/W (under 254 nm at 10 V), a 250-nm-to-400-nm rejection ratio of 9.2×103, and the rise time and the decay time of 32 ms and 6 ms, respectively. These results demonstrate that the a-Ga2O3 film grown by PE-ALD is a promising candidate for high-performance solar-blind photodetection and potentially can be integrated with Si ICs for commercial production.
Keywords
amorphous gallium oxide;passivation layer;plasma enhanced atomic layer deposition;responsivity;solar-blind photodetector;
Data
Language: |
English |
Year of publishing: |
2022 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UNG - University of Nova Gorica |
UDC: |
53 |
COBISS: |
126949891
|
ISSN: |
1674-862X |
Views: |
423 |
Downloads: |
0 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
URN: |
URN:SI:UNG |
Type (COBISS): |
Not categorized |
Pages: |
str. 1-11 |
Volume: |
ǂVol. ǂ20 |
Issue: |
ǂiss. ǂ4 |
Chronology: |
Dec. 2022 |
DOI: |
10.1016/j.jnlest.2022.100176 |
ID: |
16865768 |