Language: | English |
---|---|
Year of publishing: | 2024 |
Typology: | 1.01 - Original Scientific Article |
Organization: | UL FMF - Faculty of Mathematics and Physics |
UDC: | 517.5 |
COBISS: |
183749123
![]() |
ISSN: | 1660-5446 |
Views: | 622 |
Downloads: | 50 |
Average score: | 0 (0 votes) |
Metadata: |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Secondary language: | Slovenian |
---|---|
Secondary title: | Kompletne nesingularne holomorfne foliacije na Steinovih mnogoterostih |
Secondary abstract: | Let ▫$X$▫ be a Stein manifold of complex dimension ▫$n \ge 1$▫ endowed with a Riemannian metric ▫${\mathfrak g}$▫. We show that for every integer ▫$k$▫ with ▫$\left[\frac{n}{2}\right] \le k \le n-1$▫ there is a nonsingular holomorphic foliation of dimension ▫$k$▫ on ▫$X$▫ all of whose leaves are topologically closed and ▫${\mathfrak g}$▫-complete. The same is true if ▫$1\le k \left[\frac{n}{2}\right]$▫ provided that there is a complex vector bundle epimorphism ▫$TX\to X \times \mathbb{C}^{n-k}$▫. We also show that if ▫$\mathcal{F}$▫ is a proper holomorphic foliation on ▫$\mathbb{C}^n$▫ ▫$(n > 1)$▫ then for any Riemannian metric ▫${\mathfrak g}$▫ on ▫$\mathbb{C}^n$▫ there is a holomorphic automorphism ▫$\Phi$▫ of ▫$\mathbb{C}^n$▫ such that the image foliation ▫$\Phi_*\mathcal{F}$▫ is ▫${\mathfrak g}$▫-complete. The analogous result is obtained on every Stein manifold with Varolin's density property. |
Secondary keywords: | Steinove mnogoterosti;kompletne holomorfne foliacije;lastnost gostote; |
Type (COBISS): | Article |
Pages: | 16 str. |
Volume: | ǂVol. ǂ21 |
Issue: | ǂiss. ǂ1, [article no.] 25 |
Chronology: | Jan. 2024 |
DOI: | 10.1007/s00009-023-02566-0 |
ID: | 22947233 |