Abstract
V članku konstruiramo presenetljivo majhne domene Oka v kompleksnih evklidskih prostorih ▫$\mathbb C^n$▫ dimenzije ▫$n>1$▫ na meji možnega. Pokazano je, da je pod blagimi pogoji na neomejeno zaprto konveksno množico ▫$E$▫ v ▫$\mathbb C^n$▫ njen komplement ▫$\mathbb C^n\setminus E$▫ domena Oka. V posebnem obstajajo domene Oka v ▫$\mathbb C^n$▫, ki so le malo večje od polprostora. Splošneje je pokazano, da je komplement zaprte množice ▫$E$▫ v ▫$\mathbb C^n$▫ za ▫$n>1$▫, katere projektivno zaprtje ▫$\overline E$▫ ne seka kompleksne hiperravnine ▫$\Lambda\subset\mathbb{CP}^n$▫ in je polinomsko konveksno v ▫$\mathbb{CP}^n\setminus \Lambda\cong\mathbb C^n$▫, domena Oka v ▫$\mathbb C^n$▫.
Keywords
mnogoterost Oka;hiperbolične mnogoterosti;lastnost gostote;projektivno konveksna množica;Oka manifold;hyperbolic manifolds;density property;projectively convex sets;
Data
Language: |
English |
Year of publishing: |
2024 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.5 |
COBISS: |
143307011
|
ISSN: |
1687-0247 |
Views: |
773 |
Downloads: |
81 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Domene Oka v evklidskih prostorih |
Secondary abstract: |
In this paper, we find surprisingly small Oka domains in Euclidean spaces ▫$\mathbb C^n$▫ of dimension ▫$n>1$▫ at the very limit of what is possible. Under a mild geometric assumption on a closed unbounded convex set ▫$E$▫ in ▫$\mathbb C^n$▫, we show that ▫$\mathbb C^n\setminus E$▫ is an Oka domain. In particular, there are Oka domains only slightly bigger than a halfspace, the latter being neither Oka nor hyperbolic. This gives smooth families of real hypersurfaces ▫$\Sigma_t \subset \mathbb C^n$▫ for ▫$t \in \mathbb R$▫ dividing ▫$\mathbb C^n$▫ in an unbounded hyperbolic domain and an Oka domain such that at ▫$t=0$▫, ▫$\Sigma_0$▫ is a hyperplane and the character of the two sides gets reversed. More generally, we show that if ▫$E$▫ is a closed set in ▫$\mathbb C^n$▫ for ▫$n>1$▫ whose projective closure ▫$\overline E \subset \mathbb{CP}^n$▫ avoids a hyperplane ▫$\Lambda \subset \mathbb{CP}^n$▫ and is polynomially convex in ▫$\mathbb{CP}^n\setminus \Lambda\cong\mathbb C^n$▫, then ▫$\mathbb C^n\setminus E$▫ is an Oka domain. |
Secondary keywords: |
mnogoterost Oka;hiperbolične mnogoterosti;lastnost gostote;projektivno konveksna množica; |
Type (COBISS): |
Article |
Pages: |
str. 1801-1824 |
Volume: |
ǂVol. ǂ2024 |
Issue: |
ǂiss. ǂ3 |
Chronology: |
Feb. 2024 |
DOI: |
10.1093/imrn/rnac347 |
ID: |
22947236 |