delo diplomskega seminarja
Alja Zaletelj (Author), Petar Pavešić (Mentor)

Abstract

V homotopski teoriji enačimo preslikave, ki so med seboj homotopne. Za poljubni preslikavi iz $X$ v $Y$ iščemo podprostore $X$, na katerih sta homotopni. Najmanjše število takih podprostorov, ki domeno $X$ pokrijejo, razglasimo za njuno homotopsko razdaljo. Z uporabo lastnosti homotopije in razširjanjem pokritij normalnih prostorov dokažemo, da je homotopska razdalja na njih metrika. Homotopsko razdaljo povežemo s Lusterik-Schnirelmannovo kategorijo in topološko kompleksnostjo. Povezave med njimi nam poenostavijo dokaze njihovih lastnosti in jih predstavijo v novi luči.

Keywords

homotopija;homotopska razdalja;homotopska ekvivalenca;trikotniška neenakost;Lusternik-Schnirelmannova kategorija;kategorična množica;topološka kompleksnost;vlaknenja;prerezna kategorija;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [A. Zaletelj]
UDC: 515.1
COBISS: 200520195 Link will open in a new window
Views: 60
Downloads: 14
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Homotopic distance
Secondary abstract: In homotopy theory we identify maps that are homotopic. For two mappings from $X$ to $Y$ we look for subspaces of $X$ on which they are homotopic. The minimum number of such subspaces covering the domain $X$ is declared to be their homotopic distance. Using properties of homotopy and extending the covers of normal spaces, we prove that the homotopic distance on them is a metric. We connect homotopic distance with Lusternik-Schnirelmann category and topological complexity. The links between them simplify the proofs of their properties and present them in a new light.
Secondary keywords: homotopy;homotopic distance;homotopy equivalence;triangular inequality;Lusternik-Schnirelmann category;categorical set;topological complexity;fibrations;sectional category;
Type (COBISS): Final seminar paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 39 str.
ID: 24512084
Recommended works:
, delo diplomskega seminarja
, no subtitle data available
, delo diplomskega seminarja