Povzetek
Švarcov rod ▫$\mathsf{g}(\xi )$▫ vlaknenja ▫$\xi\colon E\to B$▫ je minimalno celo število ▫$n$▫, za katerega obstaja pokritje ▫$B$▫ z ▫$n$▫ odprtimim množicami, ki dopuščajo delni prerez za ▫$\xi$▫. Veliko pomembnih pojmov je mogoče opisati s pomočjo Švarcovega roda primerno izbranega vlaknenja, npr. Lusternik-Schnirelmannovo kategorijo, Farberjevo topološko kompleksnost, Smale-Vassilievo kompleksnost algoritmov itn. V članku obravnavamo zvezo med Švarcovim rodom in določenim tipom vlakenskih morfizmov. Glavni rezultat pravi, da če obstaja vlakenska preslikava ▫$f\colon E\to E'$▫ med vlaknenji ▫$\xi\colon E\to B$▫ in ▫$\xi'\colon E'\to B$▫, ki inducira ▫$n$▫-ekvivalenco med pripadajočimi vlakni za dovolj velike ▫$n$▫, potem je ▫$\mathsf{g}(\xi)=\mathsf{g}(\xi')$▫. Od tod dobimo vrsto zanimivih primerjav med topološko kompleksnostjo prostora in topološkimi kompleksnostmi njegovih skeletov (ter podobno za LS-kategorijo). Za primer, pri CW kompleksih, ki imajo visoko topološko kompleksnost (glede na njihovo dimenzijo in povezanost) topološka kompleksnost skeletov narašča z dimenzijo.
Ključne besede
Schwarz genus;Lusternik--Schnirelmann category;sectional category;topological complexity;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2020 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
UDK: |
515.14 |
COBISS: |
18784089
|
ISSN: |
0002-9939 |
Št. ogledov: |
428 |
Št. prenosov: |
252 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarni povzetek: |
The Schwarz genus ▫$\mathsf{g}(\xi )$▫ of a fibration ▫$\xi \colon E\to B$▫ is defined as the minimal integer ▫$n$▫ such that there exists a cover of ▫$B$▫ by ▫$n$▫ open sets that admit partial sections to ▫$\xi$▫. Many important concepts, including the Lusternik-Schnirelmann category, Farber's topological complexity, and Smale-Vassiliev's complexity of algorithms can be naturally expressed as Schwarz genera of suitably chosen fibrations. In this paper we study Schwarz genus in relation with certain types of morphisms between fibrations. Our main result is the following: if there exists a fibrewise map ▫$f\colon E\to E'$▫ between fibrations ▫$\xi \colon E\to B$▫ and ▫$\xi '\colon E'\to B$▫ which induces an ▫$n$▫-equivalence between respective fibres for a sufficiently big ▫$n$▫, then ▫$\mathsf {g}(\xi )=\mathsf {g}(\xi ')$▫. From this we derive several interesting results relating the topological complexity of a space with the topological complexities of its skeleta and subspaces (and similarly for the category). For example, we show that if a CW-complex has high topological complexity (with respect to its dimension and connectivity), then the topological complexity of its skeleta is an increasing function of the dimension. |
Strani: |
str. 1339-1349 |
Letnik: |
ǂVol. ǂ148 |
Zvezek: |
ǂno. ǂ3 |
Čas izdaje: |
March 2020 |
DOI: |
10.1090/proc/14791 |
ID: |
11551949 |