Cathal D. Walsh (Author)

Abstract

Latent variable models have been used extensively in the social sciences. In this work a latent class analysis is used to identify syndromes within Alzheimer's disease. The fitting of the model is done in a Bayesian framework,and this is examined in detail here. In particular, the label switching problem is identified, and solutions presented. Graphical summaries of the posterior distribution are included.

Keywords

No keyword data available

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FDV - Faculty of Social Sciences
Publisher: Fakulteta za družbene vede
UDC: 303
COBISS: 25331805 Link will open in a new window
ISSN: 1854-0023
Views: 324
Downloads: 55
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
URN: URN:NBN:SI
Type (COBISS): Not categorized
Pages: str. 147-162
Volume: ǂVol. ǂ3
Issue: ǂno. ǂ1
Chronology: 2006
Keywords (UDC): social sciences;družbene vede;methods of the social sciences;metode družbenih ved;
ID: 40640
Recommended works:
, ǂan ǂitem-response-modeling approach
, znanje, o katerem se razpravlja
, primer raziskave Kinodvor
, kdo naj sodeluje v raziskavi o otrocih?