Secondary language: |
English |
Secondary title: |
Hyperbolic functions |
Secondary abstract: |
This thesis is an introduction to hyperbolic functions. The history part describes the lives and work of the mathematicians Vincenzo Riccati and Johann Heinrich Lambert. The characteristics section deals with the hyperbolic functions’ definitions, graphs, derivatives, integrals, and power series expressions. The thesis also presents the relations between the hyperbolic functions, their inverse functions and addition theorems. Also included are the comparison of the hyperbolic functions to the trigonometric functions by means of their geometric interpretation, and the description of the relations among them by means of a complex argument. The thesis concludes with two examples of use, the catenary and the Dirichlet problem. |
Secondary keywords: |
mathematics;matematika; |
File type: |
application/pdf |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. Ljubljana, Pedagoška fak., Matematika in fizika [in] Fak. za matematiko in fiziko |
Pages: |
8 str. |
Type (ePrints): |
thesis |
Title (ePrints): |
Hyperbolic functions |
Keywords (ePrints): |
hiperbolične funkcije |
Keywords (ePrints, secondary language): |
hyperbolic functions |
Abstract (ePrints): |
V diplomskem delu so predstavljene hiperbolične funkcije. V sklopu zgodovine le-teh sta skozi življenje in delo opisana matematika Vincenzo Riccati in Johann Heinrich Lambert, pod lastnostmi hiperboličnih funkcij pa so obravnavane njihove definicije, grafi, odvodi, integrali in razvoji v potenčne vrste. Predstavljene so tudi zveze med njimi, njihove inverzne funkcije in adicijski izreki. Povzete so povezave hiperboličnih funkcij s trigonometričnimi, in sicer preko geometrijske razlage prvih in drugih ter povezava s pomočjo kompleksnega argumenta. Na koncu sta navedena še dva primera uporabe, in sicer verižnica in Dirichletov problem. |
Abstract (ePrints, secondary language): |
This thesis is an introduction to hyperbolic functions. The history part describes the lives and work of the mathematicians Vincenzo Riccati and Johann Heinrich Lambert. The characteristics section deals with the hyperbolic functions’ definitions, graphs, derivatives, integrals, and power series expressions. The thesis also presents the relations between the hyperbolic functions, their inverse functions and addition theorems. Also included are the comparison of the hyperbolic functions to the trigonometric functions by means of their geometric interpretation, and the description of the relations among them by means of a complex argument. The thesis concludes with two examples of use, the catenary and the Dirichlet problem. |
Keywords (ePrints, secondary language): |
hyperbolic functions |
ID: |
8310551 |