Abstract
Najprej zapišemo nekaj definicij in izrekov o hiperboličnih preslikavah, strukturalni stabilnosti in deterministicnem kaosu. Limitna množica Kleinove transformacije, ki deluje na E-neskončno Cantorjevem prostor-času, je množica periodicnih verižnih ulomkov (Chaos, Solitons and Fractals 2004; 21; 9-19). Ta množica ima hiperbolično strukturo in je strukturalno stabilna. Pokažemo, da pojav transverzalnih homokliničnih točk inducira kaotično obnašanje množice.
Keywords
matematika;Kleinova transformacija;hiperbolična preslikava;strukturalna stabilnost;transverzalna homoklinična točka;Fibonaccijevo zaporedje;mathematics;Kleinian transformation;hyperbolic map;structurally stability;transverzal homoclinic point;Fibonacci sequence;
Data
| Language: |
English |
| Year of publishing: |
2005 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UM FS - Faculty of Mechanical Engineering |
| UDC: |
515.168 |
| COBISS: |
9356310
|
| ISSN: |
0960-0779 |
| Views: |
1159 |
| Downloads: |
104 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Strukturno stabilna vendar kaotična limitna množica E-neskončno Cantorjevega prostor-časa |
| Secondary abstract: |
In the present work, first we give some definitions and theorems on hyperbolic maps, structurally stability and deterministic chaos. The limit set of the Kleinian transformation acting on the E-infinity Cantorian space-time turned out to be a set of periodic continued fractions as shown in [Chaos, Solitons & Fractals, 21 (2004) 9]. That set has a hyperbolic structure and is structurally stable. Subsequently, we show that the appearance of transversal homoclinic points induces a chaotic behavior in that set. |
| Secondary keywords: |
matematika; |
| URN: |
URN:SI:UM: |
| Pages: |
str. 1515-1520 |
| Volume: |
ǂVol. ǂ23 |
| Issue: |
ǂiss. ǂ5 |
| Chronology: |
2005 |
| ID: |
8718471 |