Abstract

Najprej zapišemo nekaj definicij in izrekov o hiperboličnih preslikavah, strukturalni stabilnosti in deterministicnem kaosu. Limitna množica Kleinove transformacije, ki deluje na E-neskončno Cantorjevem prostor-času, je množica periodicnih verižnih ulomkov (Chaos, Solitons and Fractals 2004; 21; 9-19). Ta množica ima hiperbolično strukturo in je strukturalno stabilna. Pokažemo, da pojav transverzalnih homokliničnih točk inducira kaotično obnašanje množice.

Keywords

matematika;Kleinova transformacija;hiperbolična preslikava;strukturalna stabilnost;transverzalna homoklinična točka;Fibonaccijevo zaporedje;mathematics;Kleinian transformation;hyperbolic map;structurally stability;transverzal homoclinic point;Fibonacci sequence;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 515.168
COBISS: 9356310 Link will open in a new window
ISSN: 0960-0779
Views: 1159
Downloads: 104
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Strukturno stabilna vendar kaotična limitna množica E-neskončno Cantorjevega prostor-časa
Secondary abstract: In the present work, first we give some definitions and theorems on hyperbolic maps, structurally stability and deterministic chaos. The limit set of the Kleinian transformation acting on the E-infinity Cantorian space-time turned out to be a set of periodic continued fractions as shown in [Chaos, Solitons & Fractals, 21 (2004) 9]. That set has a hyperbolic structure and is structurally stable. Subsequently, we show that the appearance of transversal homoclinic points induces a chaotic behavior in that set.
Secondary keywords: matematika;
URN: URN:SI:UM:
Pages: str. 1515-1520
Volume: ǂVol. ǂ23
Issue: ǂiss. ǂ5
Chronology: 2005
ID: 8718471