magistrsko delo
    	
    Abstract
 
Racionalna števila lahko pri upoštevanju običajne absolutne vrednosti razširimo do realnih števil. Če namesto običajne absolutne vrednosti upoštevamo p-adično absolutno vrednost, lahko racionalna števila Q razširimo do p-adičnih števil, ki jih označimo s Q_p. Magistrsko delo je nadaljevanje diplomskega dela z naslovom »p-adične norme in p-adična števila«. V njem smo predstavili absolutne vrednosti, ki jih lahko srečamo na racionalnih številih Q, dokazali smo izrek Ostrowskega, vpeljali p-adična števila in nekaj besed namenili zapisu p-adičnih števil. V magistrskem delu pa se posvetimo primerjanju realnih in p-adičnih števil. Najprej primerjamo zapis p-adičnih in realnih števil ter ugotovimo, da je zapis p-adičnih števil analogen decimalnemu zapisu realnih števil, le da pri realnih številih ta ni nujno enoličen tako kot pri p-adičnih. Nato primerjamo topologijo realnih števil in topologijo p-adičnih števil ter podamo povezavo med Cantorjevo množico ter p-adičnimi števili. V nadaljevanju pa predstavimo primerjavo med realno in p-adično analizo, saj so p-adična števila (tako kot realna števila) polno normirano polje, v katerih lahko obravnavamo podobne analitične probleme kot v realnih številih. Na koncu pogledamo, kako je v p-adičnih številih z aritmetičnimi operacijami, posvetimo se zaporedjem in vrstam ter preučimo logaritemsko in eksponentno funkcijo.
    Keywords
 
realna števila;p-adična števila;zaporedja;vrste;potenčne vrste;
    Data
 
    
        
            | Language: |  
            Slovenian | 
        
        
        
            | Year of publishing: |  
            2016 | 
        
            
        
        
            | Typology: |  
            2.09 - Master's Thesis |         
        
            
        
            | Organization: |  
            UL PEF - Faculty of Education |         
        
        
            | Publisher: | 
            [I. Femc] | 
        
   
        
            | UDC: |  
            51(043.2) |         
        
   
        
        
            | COBISS: |  
            
                
                    11330121
                     
                
             | 
        
        
        
  
        
            | Views: |  
            1918 | 
        
        
        
            | Downloads: |  
            291 | 
        
        
        
            | Average score: |  
            0 (0 votes) | 
        
        
            | Metadata: |  
            
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
             | 
        
    
    
    Other data
 
    
        
            | Secondary language: |  
            English | 
        
        
        
            | Secondary title: |  
            Comparison of real and p-adic analysis | 
        
        
        
        
            | Secondary abstract: |  
            When considering the usual absolute value, rational numbers can be extended to real numbers. If we were to take any p-adic absolute value on rational numbers instead of the usual absolute value, we can extend rational number to p-adic numbers. This master’s thesis is an expansion of the undergrad thesis titled »p-adic norms and p-adic numbers«. In my diploma thesis absolute values on rational numbers were introduced, Ostrowski's theorem was proven, p-adic numbers were constructed and their representation was briefly discussed. This master’s thesis focuses on comparing real numbers with p-adic numbers. Decimal representations of p-adic and real numbers are compared. It can be seen that the representation of p-adic numbers is analogue to the representation of decimal real numbers, although p-adic numbers have unique representations while representations of real numbers are sometimes not unique. Topology of real numbers and p-adic numbers is compared and the connection between Cantor’s set and p-adic numbers is described. Afterwards, a comparison between the real and the p-adic analysis is made. p-adic numbers (same as real numbers) are a complete normed field in which similar analytical problems can be solved as in real numbers. We finish the thesis with discussions about arithmetic operations in p-adic numbers, sequences, series, logarithmic and exponential functions. | 
        
        
        
            | Secondary keywords: |  
            mathematics;matematika; | 
        
        
        
            | File type: |  
            application/pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 
        
            
        
            | Type (COBISS): |  
            Master's thesis/paper | 
        
        
        
           
        
           
        
           
        
           
        
            | Thesis comment: |  
            Univ. v Ljubljani, Pedagoška fak., Poučevanje, Predmetno poučevanje | 
        
        
           
        
           
        
           
        
            | Pages: |  
            61 str. | 
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: |  
            9227392 |