Abstract
The main purpose of this paper is to study the following: Let m, n, and ▫$k_{i}, i = 1, 2, ..., n$▫ be positive integers and let ▫$R$▫ be a ▫$2m(m+ k_{1} + k_{2} + ... + k_{n} -1)!$▫-torsion free semiprime ring. Suppose that there exist derivations ▫$D_{i} : R \to R, i = 1, 2, ..., n + 1$▫ , such that ▫$D_{1}(x^{m})x^{k_{1}+...+k_{n}}+x^{k_{1}} D_{2}(x^{m})x^{k_{2}+...+k_{n}}+...+x^{k_{1}+...+k_{n}}D_{n+1}(x^{m})=0$▫ holds for all ▫$x \in R$▫. Then we prove that ▫$D_{1}+D_{2}+...+D_{n+1}=0$▫ and that the derivation ▫$k_{1}D_{2}+(k_{1}+k_{2})D_{3}+...+(k_{1}+k_{2}+...+k{n})D_{n+1}$▫ maps ▫$R$▫ into its center. We also obtain a range inclusion result of continuous derivations on Banach algebras.
Keywords
matematika;algebra;asociativni kolobarji in algebre;Banachove algebre;kolobarji;preslikave;ne zaključna dela;mathematics;associative rings and algebras;prime rings;Banach algebras;identities;derivations;
Data
| Language: |
English |
| Year of publishing: |
2008 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
| Publisher: |
De Gruyter Brill |
| UDC: |
512.552 |
| COBISS: |
16160776
|
| ISSN: |
0420-1213 |
| Views: |
1388 |
| Downloads: |
476 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
Slovenian |
| Secondary keywords: |
Algebra;Linearni operatorji; |
| URN: |
URN:SI:UM: |
| Type (COBISS): |
Scientific work |
| Pages: |
str. [525]-530 |
| Volume: |
ǂVol. ǂ41 |
| Issue: |
ǂno. ǂ3 |
| Chronology: |
2008 |
| ID: |
9595926 |