Joso Vukman (Avtor)

Povzetek

Naj bo ▫$K$▫ kolobar. Biaditivna simetrična preslikava ▫$D(.,.):K \times K \to K$▫ je simetrična biderivacija, če je za vsak fiksen ▫$y \in K$▫ preslikava ▫$x \mapsto D(x,y)$▫ derivacija. Glavni namen članka je dokazati rezultat v smislu klasičnega izreka E. Posnerja, ki pravi naslednje: Če je ▫$K$▫ prakolobar s karakteristiko različno od dva in sta ▫$D_1$▫ in ▫$D_2$▫ od nič različni derivaciji, potem preslikava ▫$x \mapsto D_1(D_2(x))$▫ ne more biti derivacija.

Ključne besede

matematika;asociativni kolobarji in algebre;kolobar;prakolobar;polprakolobar;derivacija;simetrična biderivacija;mathematics;associative rings and algebras;prime ring;semiprime ring;derivation;simetric biderivation;Banach algebra;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM EPF - Ekonomsko-poslovna fakulteta
UDK: 512.552
COBISS: 1332228 Povezava se bo odprla v novem oknu
ISSN: 0001-9054
Št. ogledov: 882
Št. prenosov: 85
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Simetrične biderivacije na prakolobarjih in polprakolobarjih
Sekundarni povzetek: Let ▫$R$▫ be a ring. A biadditive symmetric mapping ▫$D(.,.):R \times R \to R$▫ is called a symmetric bi-derivation if, for any fixed ▫$y \in R$▫, a mapping ▫$x \mapsto D(x,y)$▫ is a derivation. The purpose of this paper is to prove some results concerning symmetric bi-derivations on prime and semi-prime rings. We prove that existence of a nonzero symmetric bi-derivation ▫$D(.,.): R\times R \to R$▫ where ▫$R$▫ is a prime ring of characteristic not two, with the property ▫$D(x,x)x = xD(x,x), \; x \in R$▫, forces ▫$R$▫ to be commutative. A theorem in the spirit of a classical result first proved by E. Posner, which states that, if ▫$R$▫ is a prime ring of characteristic not two and ▫$D_1$▫, ▫$D_2$▫ are nonzero derivations on ▫$R$▫, then the mapping ▫$x \mapsto D_1(D_2(x))$▫ cannot be a derivation, is also presented.
URN: URN:SI:UM:
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 245-254
Letnik: ǂVol. ǂ38
Zvezek: ǂiss. ǂ2-3
Čas izdaje: 1989
ID: 1471761