| Jezik: | Slovenski jezik |
|---|---|
| Leto izida: | 2018 |
| Tipologija: | 2.09 - Magistrsko delo |
| Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
| Založnik: | [A. Simonič] |
| UDK: | 515.17 |
| COBISS: |
18512985
|
| Št. ogledov: | 746 |
| Št. prenosov: | 206 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Angleški jezik |
|---|---|
| Sekundarni naslov: | Green's theorem on hyperplanes in complex projective space |
| Sekundarni povzetek: | The rationale behind introduction of the Kobayashi hyperbolicity for complex manifolds are two classical theorems of complex analysis in one variable, namely, the Schwarz-Pick lemma and the little Picard theorem. In the present master thesis Green's projective generalisation of Picard's theorems is proved: The complement of $2n+1$ hyperplanes in general position in ${\mathbb {CP}}^n$ is complete hyperbolic and hyperbolically imbedded in ${\mathbb {CP}}^n$. This is achieved by using the extended Brody theorem for complement of a hypersurface in a compact complex manifold and Borel's generalisation of the little Picard theorem, which proof uses the first main theorem and the logarithmic derivative lemma from Nevanlinna's theory of meromorphic functions. |
| Sekundarne ključne besede: | complex manifolds;Kobayashi hyperbolicity;hyperbolic imbeddings;hyperplanes; |
| Vrsta dela (COBISS): | Magistrsko delo/naloga |
| Študijski program: | 0 |
| Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
| Strani: | VIII, 46 str. |
| ID: | 11008319 |