Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2018 |
Tipologija: | 2.09 - Magistrsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [A. Simonič] |
UDK: | 515.17 |
COBISS: | 18512985 |
Št. ogledov: | 746 |
Št. prenosov: | 206 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Green's theorem on hyperplanes in complex projective space |
Sekundarni povzetek: | The rationale behind introduction of the Kobayashi hyperbolicity for complex manifolds are two classical theorems of complex analysis in one variable, namely, the Schwarz-Pick lemma and the little Picard theorem. In the present master thesis Green's projective generalisation of Picard's theorems is proved: The complement of $2n+1$ hyperplanes in general position in ${\mathbb {CP}}^n$ is complete hyperbolic and hyperbolically imbedded in ${\mathbb {CP}}^n$. This is achieved by using the extended Brody theorem for complement of a hypersurface in a compact complex manifold and Borel's generalisation of the little Picard theorem, which proof uses the first main theorem and the logarithmic derivative lemma from Nevanlinna's theory of meromorphic functions. |
Sekundarne ključne besede: | complex manifolds;Kobayashi hyperbolicity;hyperbolic imbeddings;hyperplanes; |
Vrsta dela (COBISS): | Magistrsko delo/naloga |
Študijski program: | 0 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
Strani: | VIII, 46 str. |
ID: | 11008319 |