Povzetek
In this paper, we consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity ▫$$\begin{cases} \varepsilon^{2s}M([u]^2_{s, A_{\varepsilon}})(-\Delta)^s_{A_\varepsilon} u + V(x)u = |u|^{{2^\ast_s}-2}u + h(x, |u|^2)u, \quad x \in \mathbb{R}^N ,\\ u(x) \to 0, \quad \text{as} \; |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_{A_\varepsilon}$▫ is source is the fractional magnetic operator with ▫$0 < s < 1$▫, ▫$2^\ast_s = 2N/(N - 2s)$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+$▫ is a continuous nondecreasing function, ▫$V \colon \mathbb{R}^N \to \mathbb{R}^+_0$▫ and ▫$A \colon \mathbb{R}^N \to \mathbb{R}^N$▫ are the electric and magnetic potentials, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that ▫$\varepsilon < \mathcal{E}$▫; and (ii) for any ▫$m^\ast \in \mathbb{N}$▫, has ▫$m^\ast$▫ pairs of solutions if ▫$\varepsilon < \mathcal{E}_{m^\ast}$▫, where ▫$\mathcal{E}$▫ and $▫\mathcal{E}_{m^\ast}$▫ are sufficiently small positive numbers. Moreover, these solutions ▫$u_\varepsilon \to 0$▫ as ▫$\varepsilon \to 0$▫.
Ključne besede
fractional Schrödinger-Kirchhoff equation;fractional magnetic operator;critical nonlinearity;variational methods;
Podatki
| Jezik: |
Angleški jezik |
| Leto izida: |
2018 |
| Tipologija: |
1.01 - Izvirni znanstveni članek |
| Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
| UDK: |
517.956 |
| COBISS: |
18207577
|
| ISSN: |
0898-1221 |
| Št. ogledov: |
515 |
| Št. prenosov: |
386 |
| Ocena: |
0 (0 glasov) |
| Metapodatki: |
|
Ostali podatki
| Vrsta dela (COBISS): |
Članek v reviji |
| Strani: |
str. 1778-1794 |
| Letnik: |
ǂVol. ǂ75 |
| Zvezek: |
ǂiss. ǂ1 |
| Čas izdaje: |
March 2018 |
| DOI: |
10.1016/j.camwa.2017.11.033 |
| ID: |
11215354 |