Povzetek

In this paper, we examine the existence of multiple solutions of parametric fractional equations involving the square root of the Laplacian ▫$A_{1/2}$▫ in a smooth bounded domain ▫$\Omega \subset \mathbb{R}^n$▫ ▫$(n \ge 2)$▫ and with Dirichlet zero-boundary conditions, i.e. ▫$$ \begin{cases} A_{1/2}u = \lambda f(u) & \text{in} \quad \Omega \\ u = 0 & \text{on} \quad \partial \Omega. \end{cases}$$▫ The existence of at least three ▫$L^\infty$▫-bounded weak solutions is established for certain values of the parameter ▫$\lambda$▫ requiring that the nonlinear term ▫$f$▫ is continuous and with a suitable growth. Our approach is based on variational arguments and a variant of Caffarelli-Silvestre's extension method.

Ključne besede

fractional Laplacian;variational method;multiple solutions;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.95
COBISS: 17736793 Povezava se bo odprla v novem oknu
ISSN: 0003-6811
Št. ogledov: 511
Št. prenosov: 341
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 1483-1496
Letnik: ǂVol. ǂ96
Zvezek: ǂno. ǂ9
Čas izdaje: 2017
DOI: 10.1080/00036811.2016.1221069
ID: 11217776