Povzetek

We consider a nonlinear, nonhomogeneous Robin problem with an indefinite potential and a nonsmooth primitive in the reaction term. In fact, the right-hand side of the problem (reaction term) is the Clarke subdifferential of a locally Lipschitz integrand. We assume that asymptotically this term is resonant with respect the principal eigenvalue (from the left). We prove the existence of three nontrivial smooth solutions, two of constant sign and the third nodal. We also show the existence of extremal constant sign solutions. The tools come from nonsmooth critical point theory and from global optimization (direct method).

Ključne besede

locally Lipschitz function;Clarke subdifferential;resonance;extremal constant sign solutions,;nodal solutions;nonlinear nonhomogeneous differential operator;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18130265 Povezava se bo odprla v novem oknu
ISSN: 0022-3239
Št. ogledov: 432
Št. prenosov: 394
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 293-323
Letnik: ǂVol. ǂ175
Zvezek: ǂiss. ǂ2
Čas izdaje: Nov. 2017
DOI: 10.1007/s10957-017-1173-5
ID: 11221927