Povzetek

We consider a nonlinear Dirichlet problem driven by a variable exponent ▫$p$▫-Laplacian plus an indefinite potential term. The reaction has the competing effects of a parametric concave (sublinear) term and a convex (superlinear) perturbation (the anisotropic concave-convex problem). We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter ▫$\lambda$▫ varies. Also, we prove the existence of minimal positive solutions.

Ključne besede

variable exponent spaces;regularity theory;maximum principle;concave and convex nonlinearities;positive solutions;comparison principles;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18953305 Povezava se bo odprla v novem oknu
ISSN: 0362-546X
Št. ogledov: 360
Št. prenosov: 202
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 111861 (24 str.)
Zvezek: ǂVol. ǂ201
Čas izdaje: Dec. 2020
DOI: 10.1016/j.na.2020.111861
ID: 12036911