Povzetek

We consider a parametric semilinear Robin problem driven by the Laplacian plus an indefinite potential. The reaction term involves competing nonlinearities. More precisely, it is the sum of a parametric sublinear (concave) term and a superlinear (convex) term. The superlinearity is not expressed via the Ambrosetti-Rabinowitz condition. Instead, a more general hypothesis is used. We prove a bifurcation-type theorem describing the set of positive solutions as the parameter ▫$\lambda > 0$▫ varies. We also show the existence of a minimal positive solution ▫$\tilde{u}_\lambda$▫ and determine the monotonicity and continuity properties of the map ▫$\lambda \mapsto \tilde{u}_\lambda$▫.

Ključne besede

indefinite potential;Robin boundary condition;strong maximum principle;truncation;competing nonlinear;positive solutions;regularity theory;minimal positive solution;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18010713 Povezava se bo odprla v novem oknu
ISSN: 1534-0392
Št. ogledov: 524
Št. prenosov: 389
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 1293-1314
Letnik: ǂVol. ǂ16
Zvezek: ǂno. ǂ4
Čas izdaje: 2017
DOI: 10.3934/cpaa.2017063
ID: 11222018