Jezik: | Angleški jezik |
---|---|
Leto izida: | 2011 |
Tipologija: | 1.01 - Izvirni znanstveni članek |
Organizacija: | UM FNM - Fakulteta za naravoslovje in matematiko |
UDK: | 519.17 |
COBISS: | 15929689 |
ISSN: | 0166-218X |
Št. ogledov: | 47 |
Št. prenosov: | 20 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Slovenski jezik |
---|---|
Sekundarni naslov: | Najmanjše po poteh k-vozliščno pokritje |
Sekundarni povzetek: | A subset ▫$S$▫ of vertices of a graph ▫$G$▫ is called a ▫$k$▫-path vertex cover if every path of order ▫$k$▫ in ▫$G$▫ contains at least one vertex from ▫$S$▫. Denote by ▫$\psi_k(G)$▫ the minimum cardinality of a ▫$k$▫-path vertex cover in ▫$G$▫. It is shown that the problem of determining ▫$\psi_k(G)$▫ is NP-hard for each ▫$k \geq 2$▫, while for trees the problem can be solved in linear time. We investigate upper bounds on the value of ▫$\psi_k(G)$▫ and provide several estimations and exact values of ▫$\psi_k(G)$▫. We also prove that ▫$\psi_3(G) \leq (2n + m)/6$▫, for every graph ▫$G$▫ with ▫$n$▫ vertices and ▫$m$▫ edges. |
Sekundarne ključne besede: | matematika;teorija grafov;algoritem;vozliščno pokritje;pot;NP-polnost;disociacijsko število;po poteh vozliščno pokritje; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Delo ni kategorizirano |
Strani: | str. 1189-1195 |
Letnik: | Vol. 159 |
Zvezek: | iss. 12 |
Čas izdaje: | 2011 |
ID: | 1475487 |