| Jezik: | Angleški jezik |
|---|---|
| Leto izida: | 2013 |
| Tipologija: | 1.01 - Izvirni znanstveni članek |
| Organizacija: | UP - Univerza na Primorskem |
| UDK: | 512.552 |
| COBISS: |
16195673
|
| ISSN: | 1386-923X |
| Št. ogledov: | 3544 |
| Št. prenosov: | 83 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Slovenski jezik |
|---|---|
| Sekundarni naslov: | Jordanska [tau]-odvajanja na lokalno matričnih kolobarjih |
| Sekundarni povzetek: | Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫. |
| Sekundarne ključne besede: | matematika;algebra;antiavtomorfizem;lokalno matrični kolobar;prakolobar;jordanski homomorfizem;jordansko ▫$\tau$▫-odvajanje;Banachov prostor; |
| Vrsta dela (COBISS): | Delo ni kategorizirano |
| Strani: | str. 755-763 |
| Letnik: | ǂVol. ǂ16 |
| Zvezek: | ǂiss. ǂ3 |
| Čas izdaje: | 2013 |
| ID: | 1476336 |