Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2024 |
Tipologija: | 2.11 - Diplomsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [A. Zaletelj] |
UDK: | 515.1 |
COBISS: |
200520195
![]() |
Št. ogledov: | 60 |
Št. prenosov: | 14 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Homotopic distance |
Sekundarni povzetek: | In homotopy theory we identify maps that are homotopic. For two mappings from $X$ to $Y$ we look for subspaces of $X$ on which they are homotopic. The minimum number of such subspaces covering the domain $X$ is declared to be their homotopic distance. Using properties of homotopy and extending the covers of normal spaces, we prove that the homotopic distance on them is a metric. We connect homotopic distance with Lusternik-Schnirelmann category and topological complexity. The links between them simplify the proofs of their properties and present them in a new light. |
Sekundarne ključne besede: | homotopy;homotopic distance;homotopy equivalence;triangular inequality;Lusternik-Schnirelmann category;categorical set;topological complexity;fibrations;sectional category; |
Vrsta dela (COBISS): | Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: | 0 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: | 39 str. |
ID: | 24512084 |